

Crescent Newcastle Pty Ltd C/- Stronach Property Pty Ltd.

Preliminary Contamination Assessment

Proposed Multi-Building Residential Development 11-17 Mosbri Crescent, Cooks Hill

Experience comes to life when it is powered by expertise This page has been left intentionally blank

Preliminary Contamination Assessment

Prepared for Crescent Newcastle Pty Ltd C/- Stronach Property Pty Ltd.

Prepared by

Coffey Services Australia 19 Warabrook Boulevard Warabrook NSW 2304

t: 02 4016 2300

14 December 2018

754-NTLGE220504-AB

Quality information

Revision history

Revision	Description	Date	Originator	Reviewer	Approver
v1 draft	Draft	29/10/2018	Paul Wright	Laurie Fox	Paul Wright
AB	Final	30/10/2018	Paul Wright	Laurie Fox	Paul Wright
AB	Final	14/12/2018	Paul Wright	Mark Purdy/Richard Anderson	Paul Wright

Distribution

Report Status	No. of copies	Format	Distributed to	Date
V1 draft	1	PDF	Mark Purdy/Richard Anderson	29/10/2018
AB	1	PDF	Mark Purdy/Richard Anderson	14/12/2018

Executive Summary

Crescent Newcastle Pty Ltd (Stronach) engaged Coffey Services Australia Pty Ltd (Coffey) to carry out a Preliminary Contamination Assessment (PCA) for a proposed multi-building residential development to be constructed at 11-17 Mosbri Crescent, Cooks Hill, NSW (the Site). The proposed residential development is positioned within land parcel (Lot 1 DP 204077) and is identified for the construction of five separate buildings.

The objectives of the PCA were to:

- Identify evidence of potentially contaminating activities that may be currently occurring or has historically occurred on the site;
- Identify and assess Areas of Environmental Concern (AEC's) and Chemicals of Potential Concern (COPC's) for the site, and develop a preliminary conceptual site model if required;
- Provide recommendations for further assessment and or management, as required.

The site is currently occupied by the NBN Television broadcast facility constructed during the 1960's (1961-1962). A review of available information indicates the site was vacant land until the commencement of construction in 1961. An examination of historical, near ground level photographs (source: Newcastle Lost Facebook Group 2018 – Photo Credit Unknown) showing the construction of the NBN TV facility confirms the building was erected in a significantly cut portion of the hill (cut specifically for construction).

The site use has not changed since the 1960s and the number of buildings on site and their respective sizes, has progressively increased. Retaining walls were also constructed through the years along with the addition of significant areas of concrete pavement and bitumen roads.

As a result of the elevation profile across the site (elevation changes from approximately 36m to 52m AHD from Mosbri Crescent moving due east), fill depth is variable although typically quite shallow (i.e. < 1.0m bgs BH01 – BH03). It was observed that in BH04 the fill depth was deeper (2.8m thick) given the extensive fill used during retaining wall construction on the eastern side (rear) of the property.

Where sampled and analysed, the fill showed little evidence of chemical contamination, i.e. COPC tested resulted in concentrations below the investigation levels for the assessment. There was evidence of uncontrolled fill (building rubble including bricks, steel, concrete blocks etc.) at BH04. Given the location of BH04 along the retaining wall it is possible that the fill used historically may have been uncontrolled given the amount required for backfill purposes.

Given the significant area of building and hardstand cover on the site Coffey recommends that additional assessments are completed following the demolition of buildings and removal of existing structures to complete a more fulsome assessment of fill quality. Additional assessment should include intrusive sampling and analysis. The recommendation to undertake the assessment post demolition and post site clearance is also based on an elevated risk of encountering live services across the site (i.e. electrical, communications, water and sewer) as there is currently an extensive network within and around the Site.

Based on the findings of this assessment it is considered that the Site can be rendered suitable for the proposed residential land use, provided the following recommendations are carried out:

• Detailed Site Investigation (Post-demolition of buildings and post-clearance and removal of hardstand and other structures) – A detailed site investigation should be undertaken targeting the exposed fill areas following complete removal of the buildings and hardstand structures. This will allow a more fulsome assessment of the fill extent and quality and also establish a preliminary waste classification of the materials.

- **Review of the Hazardous Materials Register** Any existing Hazardous Materials Register (s) should be reviewed for currency and an assessment made as to whether the Register is suitable to provide WHS guidance during demolition of building structures.
- **Hazardous Materials Survey** Should a current Hazardous Materials Register not be available, it is recommended that a Hazardous Materials Survey be carried out on the main building and ancillary structures prior to demolition works. An up-to-date Hazardous Materials Register must be prepared following the completion of the Survey.
- **Construction Environmental Management Plan –** A Construction Environmental Management Plan (CEMP) must be prepared by the construction contractor and implemented prior to the commencement of bulk earthworks.
- **Unexpected Finds Protocol** An unexpected finds protocol must be included as part of the CEMP or as a stand-alone document in order to manage potentially contaminated fill material that may be encountered during the civil construction phase.

Table of contents

Exe	cutive	Summary	2
1.	Introd	luction	6
	1.1.	General	6
	1.2.	Objectives	6
	1.3.	Scope of works	6
2.	Site D	Description	8
	2.1.	Site Location and Identification	8
	2.2.	Geology and Soils	8
	2.3.	Acid Sulfate Soils	8
	2.4.	Hydrogeology and Drainage	9
3.	Deskt	top Review and Site Observations	10
	3.1.	Information Sources	10
	3.2.	Site History Review	10
		3.2.1. Historical Titles Search	10
		3.2.2. Aerial Photograph Review	11
	3.3.	Section 10.7 Planning Certificate	12
	3.4.	NSW EPA Records	12
	3.5.	Site Observations	13
	3.6.	Gaps in the Site History	14
4.	Prelin	ninary conceptual site model	14
	4.1.	Potential areas and chemicals of environmental concern	14
	4.2.	Potentially affected media, receptors and transport mechanisms	15
	4.3.	Potential exposure pathways	16
5.	Field	vork and laboratory testing	17
	5.1.	Scope of Works	17
	5.2.	Investigation Levels	17
6.	Analy	tical Laboratories	19
	6.1.	QA/QC Results	19
7.	Inves	tigation Results	20
	7.1.	Site Specific Geology	20
	7.2.	Analytical Results	21
8.	Conc	lusions and recommendations	22
9.	Limita	ations	24

Tables

Table 1: Site Details	8
Table 2: Distribution of geological units	9
Table 3: Summary of Groundwater Bore Data	9
Table 4 - Summary of Historical Titles (Lot 32 DP1198972)	10
Table 5: Historical Aerial Summary	11
Table 6: Information from Section 10.7 Planning Certificates	12
Table 7 - NSW EPA Record Search Results	12
Table 8 - Potential Areas and Chemicals of Environmental Concern	15
Table 9 - Potentially Affected Media, Receptors and Transport Mechanisms	15
Table 10 - Potential Exposure Pathways	16
Table 11 - Summary of generalised ground model	20

Figures

Figure 1: Site Location Plan	
Figure 2: Borehole Sample Location Plan	

Appendices

- Appendix A Figures
- Appendix B Tables
- Appendix C Historical Title Search
- Appendix D Historical Aerial Photographs
- Appendix E Site Photographs
- Appendix F Section 149 Certificate
- Appendix G Groundwater Bore Search
- Appendix H Contaminated Land Register Search
- Appendix I Borehole Logs
- Appendix J Analytical Laboratory Results

1. Introduction

1.1. General

Crescent Newcastle Pty Ltd (Stronach) engaged Coffey Services Australia Pty Ltd (Coffey) to carry out a Preliminary Contamination Assessment (PCA) for a proposed multi-building residential development at 11-17 Mosbri Crescent, Cooks Hill, NSW (current NBN Broadcasting Building). The proposed residential development is positioned within land parcel (Lot 1 DP 204077) and is identified for the construction of five separate residential buildings.

This report addresses the contamination scope of work outlined in proposal 754-NTLGE220504-P02 – Proposal for Phase 1 Preliminary Contamination Assessment, Proposed Multi-Building Residential Development, 11-17 Mosbri Crescent, Cooks Hill, NSW, dated 8 August 2018. The report was prepared in conjunction with a Geotechnical Report for the Site (754-NTLGE220504-AG), aspects of which have contributed to this report.

This report was prepared in accordance with the relevant sections of Chapter 3 in Schedule B2, Guideline of Site Characterisation, in the National Environment Protection (Assessment of Site Contamination) Measure (NEPC 1999). The scope of this PSI is in accordance with SEPP 55.

1.2. Objectives

The objectives of the PSI were to:

- Identify evidence of potentially contaminating activities that may be currently occurring or has historically occurred on the site;
- Identify and assess Areas of Environmental Concern (AEC's) and Chemicals of Potential Concern (COPC's) for the site, and develop a preliminary conceptual site model if required; and
- Provide recommendations for further assessment and or management, as required.

1.3. Scope of works

To achieve the above objectives, the following scope of works were undertaken:

A historical review of past activities at the site with the potential to cause contamination, including:

- Review of published information and readily available information held in file by Coffey related to soils, geology and hydrogeology;
- A site walkover to help identify AECs and potential COCs;
- A review of previous site ownership (land titles search) for the lots comprising the site;
- A review of selected readily available historical aerial photography imagery over the past 64 years;
- A review of the Section 10.7 Planning Certificates held by Council for the lots comprising the site;
- A review of NSW Environment Protection Authority (EPA) notices under the Contaminated Land Management Act (1997) and a search of NSW Office of Water for records for nearby registered groundwater bores;

- Review and collation of the above information and identification of potential AECs and COPCs for the site and development of a preliminary CSM; and
- Preparation of this PCA report.

2. Site Description

2.1. Site Location and Identification

The Site is located at 11-17 Mosbri Crescent, Cooks Hill, NSW. The regional location is shown in Figure 1, Appendix A. The relevant site details are summarised in Table 1.

Site Address	11-17 Mosbri Crescent, Cooks Hill, NSW, 2300			
Approximate Site Area	1.3 Hectares			
Title Identification Details	Lot 1 DP 204077			
Current Land Zoning	Per the Section 10.7 Report from the Newcastle City Council (NCC) the site is zoned as: • R3 Medium Density Residential			
Current Land use	The site is currently occupied by the NBN Television Broadcast Studio			
Previous Land use	The site has been used for TV broadcasting since 1962.			
Adjoining Site Uses	 North – Medium density residential – Pit Street; South – Medium Density Residential – Hillview Crescent; East – Vacant bushland, Wolfe Street; West – Medium Density Residential, Mosbri Crescent. 			
Site Coordinates	The centre of the site is located approximately at 32°55'54.18"S, 151°46'37.21"E			

Table 1: Site Details

2.2. Geology and Soils

Based on the 1:100,000 scale Newcastle Coalfield Geology map (Sheet 9231), the site is underlain by the boundary between late Permian aged Lambton Subgroup and Adamstown Subgroup (Upper portions of the site) of the Newcastle Coal Measures. These subgroups comprising sandstone, siltstone, claystone, coal and tuff.

The Victoria Tunnel Seam (the base of the Adamstown Subgroup) was not observed during drilling at the site nor was the Merewether Conglomerate, indicating the site was probably within the Lambton Subgroup below the Adamstown Subgroup. The rocks at the site generally comprise interbedded and interlaminated siltstones and sandstones with layers of coal as indicated in the description for the Lambton Subgroup.

2.3. Acid Sulfate Soils

Reference to the Newcastle 1:25,000 Acid Sulfate Soil Risk Map indicates that the site is located in an area of no known occurrence of Acid Sulfate soils (ASS).

Table 2: Distribution of geological units

	Depth to base of inferred geotechnical unit (m)										
Borehole ID	Unit 1a	Unit 1b	Unit 2a	Unit 2b	Unit 3a	Unit 3b	Unit 3c	Unit 3d	Unit 3e	Unit 3f	Unit 3g
BH01	0.02	0.40	4.20	4.50	13.65	NE	20.12	25.05	29.70	33.30	>40.00
BH02	0.02	0.25	NE	NE				NC			
BH03	0.02	0.40	1.80	3.40	17.20	18.46	25.95	27.35	29.20	31.70	>40.00
BH04	0.02	2.80	4.60	4.70				NC			
Notes NE - Not encountered NC - Not cored											

2.4. Hydrogeology and Drainage

Groundwater beneath the site is anticipated to be present in an unconfined or semi-confined aquifer at depths greater than 10 metres below the ground surface (bgs). Regional groundwater flow is anticipated to follow the general slope of the region to the northwest ultimately discharging into the Hunter River located approximately 500m north of site.

Surface water is considered to follow the local topography and flow into municipal downstream stormwater drains forming part of the Cottage Creek Catchment. Water collected within the Cottage Creek Catchment discharge into the Harbour via a discharge point at Wharf Road, approximately 2km northeast of the Site.

A search of the NSW Office of Water for registered groundwater bores located within a 500 m radius of the site was undertaken. The search revealed that there is one (1) groundwater bore registered within this radius. The detail of the registered bore is summarised in Table 3. A copy of the groundwater bore search is included in Appendix G.

Table 3: Summary of Groundwater Bore Data

Bore ID	Status	Purpose	Approximate Distance from Site
GW202514	Active	Monitoring Bore	500m northwest

3. Desktop Review and Site Observations

3.1. Information Sources

A desktop study and site observations were conducted as part of the PCA, and included:

- A historical title search dating back 170 years;
- A review of aerial photography from the past 62 years;
- A review of the Section 149 Planning Certificate for the site held by Council;
- A review of NSW EPA notices applying to the site and nearby properties;
- Site walkover and a limited sampling and laboratory analysis of selected soil samples to observe potential areas of environmental concern and current site conditions; and

The information provided from the above reviews are summarised in the sections.

3.2. Site History Review

3.2.1. Historical Titles Search

A search of historical titles for the site (Lot 1 DP204077) was undertaken by Advanced Legal Searchers Pty Ltd. A list of past registered proprietors for the land parcels was obtained dating back to 1847. The results of the search are included in Appendix C and presented in Table 4.

Table 4 - Summary	of Historical Titles	(Lot 32	DP1198972)
		(-0.0-	DI 1100012)

Conveyance Book Details	Date	Proprietor	Inferred Land Use
Portion 268A Parish Newcastle – Crown Grant	1847 - 1952	Australia Agricultural Company	Private/Agricultural
Lot 40 Section F of the Australian Agricultural Company's subdivision and other land – Area 13 Acres 3 Roods 17 ³ / ₄ Perches – Conv Book 2206 No. 650)	1952 - 1958	Cecil Kay Orrett, master builder	Private
Part Lot 40 Section F of the Australian Agricultural Company's subdivision – Area 13 Acres 2 Roods 26 Perches – Conv Book 2461 No. 838	1958 - 1961	Orrett Bros. Pty. Limited	Private
Part Lot 40 Section F Newcastle of the Australian Agricultural Company's subdivision and	1961 - 1982	Newcastle Broadcasting and	Commercial

Conveyance Book Details	Date	Proprietor	Inferred Land Use
other land – Area 3 Acres 3 ½ Perches – Conv Book 2572 No. 435		Television Corporation Limited	
Lot 1 DP 204077 – CTVol 14876 Fol 122	1982 - 1987	NBN Limited (previously Newcastle Broadcasting and Television Corporation Limited)	Commercial
Lot 1 DP 204077	1988 – To Date	Various leases shown on Historical Folio 1/204077	Commercial
Lot 1 DP 204077	1987 – To Date	NBN Limited	Commercial

3.2.2. Aerial Photograph Review

Aerial photographs of the site were purchased from the Department of Land and Property Information and assessed by a Coffey Environmental Scientist. The results of the aerial photograph review are summarised in Table 5. The aerial photographs are presented in Appendix D.

Table 5: Historical Aerial Summary

Date	Site	Surrounding Land
1954	The site appears to be undeveloped vegetation with what appears to be patchy cleared areas in multiple locations, possibly indicative of land disturbance.	The site is surrounded by what appears to be residential allotments with a sporting facility to the east.
1966	The site contains what appears to be a large building that based on the historical record is probably houses the Newcastle Broadcasting and Television Corporation. There are no areas demarcated for parking/hardstand visible in the photo.	There are more residential allotments visible in all directions. A road to the west has been developed (currently Mosbri Crescent) with a continuation to the south (currently Hillview Crescent). A few houses are visible just east of the Hillview Crescent and south of Mosbri Crescent. There also appears to be some disturbance to the vacant land allotment to the east. There appear to be cleared areas and tracks visible.
1976	There is more development visible at the site with an additional building added to the north eastern extent. Parking lots and hardstand have been constructed to the north, west and south of the main building. A small shed/building has been added to the southern extent of the main building.	More residential development is visible to the south of the building in the allotment bound by Mosbri and Hillview Crescents. The vacant lot to the east also appears to be more disturbed with much of the vegetation either stripped with ruts, channels and clearings visible.

Date	Site	Surrounding Land
1987	Two extensions, one north and the other south of the main building is visible along with the placement of hardstand parking to the northwest of the Site. The internal roads have also been reconfigured given the increase in the size of the building footprint.	The surrounding areas are generally unchanged with significant vegetation regrowth visible in the vacant lot to the east.
1993	The site is generally unchanged when compared to the 1987 photograph.	No changes in the general surrounds are observed. Vegetation regrowth continues in the eastern vacant lot.
2004	The site is generally unchanged when compared to the 1993 photograph. Three satellite/communication dishes are visible on the eastern side of the main building.	No changes in the general surrounds are observed. Vegetation regrowth continues in the eastern vacant lot with a well-established tree canopy now in place.

3.3. Section 10.7 Planning Certificate

The section 10.7 Certificates for Lot 1 DP 204077 were obtained from Newcastle City Council. A copy of the certificates is provided in Appendix F. Table 6 summarises the information contained within the certificates.

Table 6: Information from Section 10.7 Planning Certificates

Address/Allotment	Current Zoning	Critical Habitats	Conservation Areas	Hazard Risk Restrictions	Site Contamination Notices
11-17 Mosbri Crescent, The Hill, NSW, 2300 (Lot 1 DP 204077)	R3 Medium Density Residential	None	None	Landslide Risk Bushfire Prone Land	None

3.4. NSW EPA Records

A search of the NSW EPA database revealed that 21 sites within the Newcastle City Council LGA are identified on the contaminated land register as having current and/or former notices. The 21 sites identified are all located outside of a 1km radius buffer zone from the site and are not considered to have an impact on the site. The 21 sites are listed in Table 7. A copy of the search is provided in Appendix H.

Table 7 -	NSW	EPA	Record	Search	Results

Suburb	Address/Site name	Notices related to site	Distance from site
Hamilton	Clyde Street, Hamilton Gasworks	3 current notices and 1 former	5km
Hamilton	116 Tudor Street, Taxi Services	4 Former	5km
Hamilton North	56 Clyde Street, Black and Decker	1 Current	5km
Hamilton North	54 Clyde Street, ELMA	1 current and 1 former	5km

Suburb	Address/Site name	Notices related to site	Distance from site
Hamilton North	5 Chatham Street, Shell Newcastle Terminal	2 current and 2 former	5km
Hexham	Sparke Street, Forgacs Site	1 Current	6km
Hexham	64 Old Maitland Road, Trojay Pty Ltd.	1 Current	12km
Kooragang	Cormorant Road, BHP Kooragang	1 current and 1 former	12km
Kooragang	15 Greenleaf Road, Orica Kooragang island	4 current and 9 former	15km
Maryville	184-188 Hannell Street, 7-Eleven, Former Mobil Service Station	1 current	3km
Mayfield	The Buffer Zone extending directly adjacent to the Hunter River, near the Tourle Street Bridge, BHP Steel River	3 current and 1 former	9km
Mayfield	Industrial Drive., BHPB Supply Site	3 current and 7 former	7km
Mayfield	Industrial Drive, Onesteel (BHP)	5 current and 1 former	7km
Mayfield West	East of Woodstock Street and Tourle Street, Koppers Coal Tar	2 current and 1 former	7km
Newcastle	Bound by Hunter River, Selwyn Street & Industrial Drive, BHP Steelworks (Closure Site)	9 current and 3 former	7km
Newcastle	26-28 Honeysuckle Drive, Reclaimed Land	1 former	2km
Sandgate	Maitland Road, North Limited Storage Handling Facility	1 current and 7 former	14km
Shortland	1,2 and 28 Astra Street, Former Astra Street Landfill	3 current and 3 former	13km
Tarro	Woodland Close, Green Acres Farm	1 Current	21km
Tighes Hill	110 Elizabeth Street, Former Mobil Terminal	6 Former	6km
Wickham	156 Hannell Street, Caltex Terminal	1 Current	3km

3.5. Site Observations

A Coffey Environmental Scientist visited the site on 29 August 2018. Site photographs were taken during the visit, and are shown in Appendix E.

Observations made during the site walkover at 11-17 Mosbri Crescent (Lot 1 DP 204077) included:

- The site is used primarily for the NBN Television broadcast studios and includes the main and support buildings, hardstand parking and communications infrastructure (satellite dishes) – Appendix E, Photos 1 and 2;
- Site is located on a hillslope, with a general slope down to the west;
- The site is terraced on multiple levels, with an extensive network of retaining walls throughout as the site has been constructed using cut and fill Appendix C, Photos 3 and 4 for terracing and Photo 12 for historical construction image);

- The asphalt surfaces were generally observed to be in good condition. Some cracking was observed in areas Appendix E, Photos 5 and 6;
- A cooling tank/tower was observed in the eastern portion of the site Appendix E, Photo 7;
- There were no chemical storage sheds observed, however there was some paint (a few paint cans of different volumes) observed in storage sheds on the eastern side of the property – Appendix E, Photo 8;
- Multiple underground services pits and access point were observed (including an extensive electrical network, water, sewer and communications) are present on site;
- There was some disused and scrap machinery and other pieces of large solid waste observed to the eastern side of the property Appendix E, Photo 9;
- Satellite/communication dishes were observed along the eastern side of the property Appendix E, Photo 10;
- An electrical stand-by generator was observed to the north-eastern extent (eastern side) of the property – Appendix E, Photo 11.

These observations were noted to be reasonably consistent with web-based aerial photography provided via google Earth.

3.6. Gaps in the Site History

The following information sources were referred to for this assessment:

- NSW EPA;
- Section 149 Planning Certificates provided by Newcastle City Council;
- Historical Land title search between 1847 and 2018;
- Aerial photographs and Google Earth images provided for the period between 1954 and 2004;
- Observations made in the field during the site walkover.

Activities prior to 1954 (period of Crown and Private ownership) cannot be substantiated by aerial imagery as there are no records available for examination.

4. Preliminary conceptual site model

Based on the site history review and site walkover, a preliminary conceptual site model (CSM) has been developed.

4.1. Potential areas and chemicals of environmental concern

The areas and chemicals of potential environmental concern are listed in Table 8.

Table 8 - Potential Areas and Chemicals of Environmental Concern

AEC	Potentially Contaminating Activity	Potential COCs	Likelihood of Contamination*	Comments
1 (Entire Site)	Extent and quality of fill (beneath and around existing buildings)	Heavy Metals, OCP, TPH, BTEX, PAH, Asbestos	Low to medium	Newcastle has a long industrial history and fill is known to be impacted with PAH and heavy metal.
2 Access road and parking pavements	Coal tar and slag used in pavement construction pre 1980s	TRH, BTEX and PAH	Medium	Pavements constructed prior to 1970s and 80s may contain coal tar and slag. Newer pavements 9after 1980s) were sometimes constructed over older coal tar and slag pavements
3 Electrical generator	Potential for leaks and spills of oil and fuel	TRH, PAH	Low	Generator was placed on a hardstand pad, in a closed bunded enclosure.

Notes: * = This is a qualitative assessment of the probability of contamination being detected at the potential AEC. Metals - Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel and Zinc; BTEX - Benzene, Toluene, Ethylbenzene and Xylenes; TRH - Total Recoverable Hydrocarbons; PAH - Polycyclic Aromatic Hydrocarbons; OCP - Organochlorine Pesticides; OPP - Organophosphorus Pesticides; PCB - Polychlorinated Biphenyls; VOC - Volatile Organic Compounds; SVOC - Semi-Volatile Organic Compounds

4.2. Potentially affected media, receptors and transport mechanisms

Table 9 summarises the potentially affected media, key potential receptors and transport mechanisms.

Table 9 - Potentially	Affected Media.	Receptors and	Transport	t Mechanisms
	y Ancolou moulu,	incooptor 3 and	manspor	meenamonis

Consideration	Information
Potentially Affected Media	Fill material and upper layers of natural residual soil.
Potential Transport Mechanisms & Exposure Pathways	Direct dermal contact with contaminated soil Ingestion of contaminated soil Inhalation of airborne dusts Inhalation of asbestos fibres
Potential Receptors of Contamination	Construction/maintenance workers Potential exposure via direct vapour inhalation Potential exposure via dermal contact with soil and ingestion of soil or former coal tar pavements.

Consideration	Information
	Potential exposure via secondary inhalation of airborne dusts (lead and asbestos).
	<i>Future Site Users</i> Potential exposure via dermal contact, and ingestion/inhalation of soil and dust. Contact with groundwater is considered unlikely due to groundwater depth anticipated to be greater than 10m bgs.
	<i>Groundwater</i> It is unlikely contaminants could leach from soils into groundwater due to groundwater depth anticipated to be greater than 10m bgs.

4.3. Potential exposure pathways

Table 10 summarises the identified key potential exposure pathways

Table 1	0 -	Potential	Exposure	Pathways
---------	-----	-----------	----------	----------

Receptor	Exposure Pathway	Comment
Construction/ Maintenance Workers	Potentially Complete	There is a potential for workers conducting subsurface works to be exposed to soils containing potential contaminants via dermal contact, ingestion of soils, inhalation of organic vapours and asbestos fibres during demolition activities.
Future site users	Potentially Complete	There is a potential for future site users to be exposed to soils containing potential contaminants via dermal contact, ingestion and inhalation pathways.
Groundwater	Incomplete	Given the depth to groundwater is >10 mbgs, a complete exposure pathway probably does not exist.
Surface Water	Incomplete	Given that the distance between the site and nearest surface water body is approximately 2km, a complete exposure pathway probably does not exist.

5. Fieldwork and laboratory testing

Fieldwork activities were undertaken at the site on 16th and 17th August 2018 to further assess the identified plausible potentially complete exposure pathways set out in Table 10. The sampling locations are shown on Figure 2.

5.1. Scope of Works

The following scope of works was undertaken:

- Advancement of four test bores by assisted by a backhoe excavator with a 300mm auger attachment with sampling targeting fill layers (variable depths at each location);
- Nine (9) primary soil samples were collected. Two (2) samples were analysed from BH01, BH02 and BH03 with three samples analysed in BH04 (deeper fill to 3.0m bgs);
- Visual and olfactory observations were noted on field screening sheets. Soil samples were collected using a fresh pair of disposable nitrile loves to prevent cross-contamination. Soil samples were placed in clean, laboratory supplied acid washed glass jars. Samples were stored on ice in a secure cooler while on site and in transit to the analytical laboratories; and
- The soil samples were submitted selectively for laboratory analysis for identified COPC's including Heavy metals (Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel and Zinc), TRH, BTEX, PAHs, Phenols, OCP Pesticides, PCB's and Asbestos in soil.

5.2. Investigation Levels

The screening criteria has been derived on the basis of conservative assumptions relating to land use, receptor behaviour, site, building and soil characteristics.

Soil analytical results have been compared against ASC NEPM (1999) health investigation levels (HILs) HIL-A & B 'Residential' based on assumptions regarding exposure settings related to non-sensitive land use.

Discussion of results has also been compared to the ASC NEPM (2013) Health Screening Levels (HSLs), (derived from CRC CARE HSLs (CRC CARE, 2011)) for vapour intrusion to provide further evaluation of potential risks to human health resulting from intrusion of hydrocarbon vapours emanating from soil impacts at the site, HSLs have been adopted based on the potential receptors, subsurface lithology and depth from impacts to soil.

To facilitate screening against HILs and HSLs relevant to the site, the following have been included in the soil analytical data table Appendix B, Table LR1 (HIL) and Table LR2 (HSL).

- ASC NEPM (2013) Health Investigation Levels, HIL-A and B, Residential;
- ASC NEPM (2013) Soil HSLs for Vapour Intrusion, HSL-A/B Residential, Sand, 0 to <2m;

The soil screening assessment criteria are for comparative purposes only and should not be regarded as "clean-up" levels.

Management Limits

The purpose of the Management Limits is to *"avoid or minimise"* potential effects of petroleum hydrocarbons. NEPM Schedule B1 provides these as an interim Tier 1 guidance to manage potential effects of:

- Formation of observable Non-Aqueous Phase Liquid (NAPL);
- Fire and explosive hazards; and
- Effects on buried infrastructure.

The application of the management limits requires the consideration of site-specific factors such as the depth of building services and depth to groundwater, to assess the maximum depth to which the limits should apply.

6. Analytical Laboratories

Samples were forwarded to NATA accredited laboratories (Eurofins MGT, Oakleigh Victoria (Primary Laboratory) and ALS Environmental, Springvale Victoria (Secondary Laboratory) for the analysis requested. A total of Seven (7) Primary samples, including 1 Intra-lab duplicate and 1 inter-lab triplicate sample were collected for field quality assurance/quality control (QA/QC) purposes.

Samples were accompanied by Chain of Custody documentation, received and acknowledged by the laboratories. Soil samples were dispatched on ice and received by the laboratory within recommended holding times.

6.1. QA/QC Results

In order to assess field quality assurance / quality control (QA/QC) procedures, the following field duplicate samples were collected and analysed with the primary samples.

Primary Sample	Field Quality Sample(s)
BH02 – 0.5	QC3 (Intra-Lab Duplicate)
BH02 – 0.5	QC4 (Intra-Lab Duplicate (Triplicate))

The relative percentage differences (RPDs) calculated for the contaminants tested were reported within relevant acceptance limit criteria of 50% (acceptable RPD) for the applicable EQL multiplier ranges All concentrations measured were below 10 times the EQL with many just at or above the EQL.

The laboratory conducted internal quality control using laboratory duplicates, spikes and method blanks. The laboratory internal quality control showed duplicates with laboratory acceptable ranges. The method blank results were recorded below the laboratory limit of reporting and spike recoveries within control limits.

Based on the review of the QA/QC data, it is considered that soil results are likely to be representative of conditions at the sampling locations at the time of sampling and are suitable for use in this site assessment. The results of the QA/QC analysis are provided in Table LR3 (attached).

7. Investigation Results

7.1. Site Specific Geology

Based on the ground investigation results (Coffey Ref: 754-NTLGE220504-AG), the site is overlayed by fill material to depths ranging from 0.4m to 2.8m below ground surface (bgs) in the carpark level situated to the north and rear of the NBN building, respectively. The fill is underlain by residual soils grading into extremely weathered rock comprising clay materials to a depth of 4.7m. It is noted the boreholes were carried out in accessible areas only which comprise the current carpark or paved areas. Further drilling will be required at later stage to confirm the preliminary ground model.

The borehole location plan is provided as Figure 2, Appendix A and borehole logs from the site investigation, are provided in Appendix I. The interpreted geotechnical units encountered at the site are shown in Table 11.

Unit	Material / Origin	Description
1a	Fill	WEARING COARSE: bitumen spray seal/s, up to 20mm thick varying within the site
		Sandy CLAY: low to medium plasticity, grey, dark brown, fine grained sand, with fine angular to sub-angular gravel
1b	Fill	Sandy GRAVEL: fine to coarse grained, sub-angular to angular, grey, with fine grained sand
		Clayey SAND: fine to coarse grained, brown and red
		Sandy CLAY: low to medium plasticity, dark brown, dark grey, mottled orange, fine grained sand, with fine, sub-angular to sub-rounded gravel and glass pieces
		Sandy CLAY: low to medium plasticity, dark brown and dark grey, mottled red, fine to coarse grained sand
2a	Residual Soil	CLAY: low to medium plasticity, grey to pale grey, orange laminations, mottled orange, red and brown, with fine grained sand and gravel
		Gravelly CLAY: low to medium plasticity, pale grey and grey, fine grained, rounded to sub-rounded gravel, trace of fine to coarse grained sand
2b	Extremely weathered rock	Sandy CLAY: low plasticity, orange, mottled pale brown, fine grained sand
		SANDSTONE: fine grained, pale grey and orange
3a	Distinctly to slightly weathered rock	SANDSTONE: fine to medium grained, brown/orange and grey, with siltstone bands and black carbonaceous laminations, distinctly to slightly weathered, low to medium strength
3b	Coal Seam	COAL: black, crushed seams, extremely weathered to highly weathered, very low to low strength, cleated
3с	Slightly weathered to fresh rock	SANDSTONE: fine to medium grained, grey to brown, with black carbonaceous veneer, moderately to slightly weathered, low to medium strength

Table 11 - Summary of generalised ground model

Unit	Material / Origin	Description
3d	Moderately to slightly weathered rock	SILTSTONE: grey to dark grey, with some sandstone bands, slightly weathered to fresh, low to medium strength
Зе	Coal Seam	COAL: black, crushed seams, extremely weathered to highly weathered, very low to low strength, cleated
Зf	Moderately to slightly weathered rock	SILTSTONE: grey to dark grey, with some sandstone bands, slightly weathered to fresh, low to medium strength
3g	Slightly weathered to fresh rock	SANDSTONE: fine to medium grained, grey to brown, with black carbonaceous veneer, moderately to slightly weathered, low to medium strength

7.2. Analytical Results

Soil analytical results and comparisons to the relevant assessment investigation levels are presented in Appendix B, Table LR1 and Table LR2. Analytical Laboratory reports of and chain of custody (COC) documentation with analyses requested are provided in Appendix J.

Concentrations of COPC's, in each sample tested, were measured below the relevant ASC NEPM 1999 HIL/HSL A/B 'Residential' Guidelines. There was also no asbestos detected either visually in the samples collected and none detected in the samples analysed for asbestos presence/absence.

8. Conclusions and recommendations

The site is currently occupied by the NBN Television broadcast facility constructed during the 1960's (1961-1962). A review of available information indicates the site was vacant land until the commencement of construction in 1961. An examination of historical, near ground level photographs (source: Newcastle Lost Facebook Group 2018 – Photo Credit Unknown) showing the construction of the NBN TV facility confirms the building was erected in a significantly cut portion of the hill (cut specifically for construction).

The site use has not changed since the 1960s and the number of buildings on site and their respective sizes, has progressively increased. Retaining walls were also constructed through the years along with the addition of significant areas of concrete pavement and bitumen roads.

As a result of the elevation profile across the site (elevation changes from approximately 36m to 52m AHD from Mosbri Crescent moving due east), fill depth is variable although typically quite shallow (i.e. < 1.0m bgs BH01 – BH03). It was observed that in BH04 the fill depth was deeper (2.8m thick) given the fill used during retaining wall construction on the eastern side (rear) of the property.

Where sampled and analysed, the fill showed little evidence of chemical contamination, i.e. COPC tested resulted in concentrations below the investigation levels for the assessment. There was evidence of uncontrolled fill (building rubble including bricks, steel, concrete blocks etc.) at BH04. Given the location of BH04 along the retaining wall it is possible that the fill used historically may have been uncontrolled given the amount required for backfill purposes and the lack of regulation at the time governing the quality of imported fill.

Given the significant area of building and hardstand cover on the site Coffey recommends that additional assessments are completed following the demolition of buildings and removal of existing structures to complete a more fulsome assessment of fill quality. Additional assessment should include intrusive sampling and analysis. The recommendation to undertake the assessment post demolition and post site clearance is also based on an elevated risk of encountering live services across the site (i.e. electrical, communications, water and sewer) as there is currently an extensive network within and around the Site.

Based on the findings of this assessment it is considered that the Site can be rendered suitable for the proposed residential land use, provided the following recommendations are carried out:

- Detailed Site Investigation (Post-demolition of buildings and post-clearance and removal of hardstand and other structures) A detailed site investigation should be undertaken targeting the exposed fill areas following complete removal of the buildings and hardstand structures. This will allow a more fulsome assessment of the fill extent and quality and also establish a preliminary waste classification of the materials.
- **Review of the Hazardous Materials Register** Any existing Hazardous Materials Register (s) should be reviewed for currency and an assessment made as to whether the Register is suitable to provide WHS guidance during demolition of building structures.
- **Hazardous Materials Survey** Should a current Hazardous Materials Register not be available, it is recommended that a Hazardous Materials Survey be carried out on the main building and ancillary structures prior to demolition works. An up-to-date Hazardous Materials Register must be prepared following the completion of the Survey.
- **Construction Environmental Management Plan –** A Construction Environmental Management Plan (CEMP) must be prepared by the construction contractor and implemented prior to the commencement of bulk earthworks.
- **Unexpected Finds Protocol** An unexpected finds protocol must be included as part of the CEMP or as a stand-alone document in order to manage potentially contaminated fill material that may be encountered during the civil construction phase.

This report should be read in conjunction with the attached Important Information about your Coffey Environmental Report.

9. Limitations

Information is not readily available on the early history (pre-1954) of the site and therefore, some site activities may not have been identified. Aerial photographs are up to 12 years apart and other site history information available prior to 1954 is sparse. We cannot preclude that potentially contaminating activities took place during these periods. Allowances for uncertainties and potential unexpected finds should be made during planning and development phases.

It is the nature of contaminated site investigations that the degree of variability in site conditions cannot be known completely and no sampling and analysis program can eliminate all uncertainty concerning the condition of the site. Professional judgement must be exercised in the collection and interpretation of the data.

In preparing this report, current guidelines for assessment and management of contaminated land were followed. This work has been conducted in good faith in accordance with Coffey understanding of the client's brief and general accepted practice for environmental consulting.

This report was prepared for Crescent Newcastle Pty Ltd. to provide a preliminary assessment of land contamination at the subject site. No warranty, expressed or implied, is made as to the information and professional advice included in this report. Anyone using this document does so at their own risk and should satisfy themselves concerning its applicability and, where necessary, should seek expert advice in relation to the particular situation. Any use of information in this report must consider the uncertainties outlined in *Important Information about your Coffey Environmental Report*, which follows this text.

Important information about your **Coffey** Environmental Report

Introduction

This report has been prepared by Coffey for you, as Coffey's client, in accordance with our agreed purpose, scope, schedule and budget.

The report has been prepared using accepted procedures and practices of the consulting profession at the time it was prepared, and the opinions, recommendations and conclusions set out in the report are made in accordance with generally accepted principles and practices of that profession.

The report is based on information gained from environmental conditions (including assessment of some or all of soil, groundwater, vapour and surface water) and supplemented by reported data of the local area and professional experience. Assessment has been scoped with consideration to industry standards, regulations, guidelines and your specific requirements, including budget and timing. The characterisation of site conditions is an interpretation of information collected during assessment, in accordance with industry practice,

This interpretation is not a complete description of all material on or in the vicinity of the site, due to the inherent variation in spatial and temporal patterns of contaminant presence and impact in the natural environment. Coffey may have also relied on data and other information provided by you and other qualified individuals in preparing this report. Coffey has not verified the accuracy or completeness of such data or information except as otherwise stated in the report. For these reasons the report must be regarded as interpretative, in accordance with industry standards and practice, rather than being a definitive record.

Your report has been written for a specific purpose

Your report has been developed for a specific purpose as agreed by us and applies only to the site or area investigated. Unless otherwise stated in the report, this report cannot be applied to an adjacent site or area, nor can it be used when the nature of the specific purpose changes from that which we agreed.

For each purpose, a tailored approach to the assessment of potential soil and groundwater contamination is required. In most cases, a key objective is to identify, and if possible quantify, risks that both recognised and potential contamination pose in the context of the agreed purpose. Such risks may be financial (for example, clean up costs or constraints on site use) and/or physical (for example, potential health risks to users of the site or the general public).

Limitations of the Report

The work was conducted, and the report has been prepared, in response to an agreed purpose and scope, within time and budgetary constraints, and in reliance on certain data and information made available to Coffey.

The analyses, evaluations, opinions and conclusions presented in this report are based on that purpose and scope, requirements, data or information, and they could change if such requirements or data are inaccurate or incomplete.

This report is valid as of the date of preparation. The condition of the site (including subsurface conditions) and extent or nature of contamination or other environmental hazards can change over time, as a result of either natural processes or human influence. Coffey should be kept appraised of any such events and should be consulted for further investigations if any changes are noted, particularly during construction activities where excavations often reveal subsurface conditions.

In addition, advancements in professional practice regarding contaminated land and changes in applicable statues and/or guidelines may affect the validity of this report. Consequently, the currency of conclusions and recommendations in this report should be verified if you propose to use this report more than 6 months after its date of issue.

The report does not include the evaluation or assessment of potential geotechnical engineering constraints of the site.

Interpretation of factual data

Environmental site assessments identify actual conditions only at those points where samples are taken and on the date collected. Data derived from indirect field measurements, and sometimes other reports on the site, are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact with respect to the report purpose and recommended actions.

Variations in soil and groundwater conditions may occur between test or sample locations and actual conditions may differ from those inferred to exist. No environmental assessment program, no matter how comprehensive, can reveal all subsurface details and anomalies. Similarly, no professional, no matter how well qualified, can reveal what is hidden by earth, rock or changed through time.

The actual interface between different materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions.

For this reason, parties involved with land acquisition, management and/or redevelopment should retain the services of a suitably qualified and experienced environmental consultant through the development and use of the site to identify variances, conduct additional tests if required, and recommend solutions to unexpected conditions or other unrecognised features encountered on site. Coffey would be pleased to assist with any investigation or advice in such circumstances.

Recommendations in this report

This report assumes, in accordance with industry practice, that the site conditions recognised through discrete sampling are representative of actual conditions throughout the investigation area. Recommendations are based on the resulting interpretation.

Should further data be obtained that differs from the data on which the report recommendations are based (such as through excavation or other additional assessment), then the recommendations would need to be revised and may need to be revised.

Report for benefit of client

Unless otherwise agreed between us, the report has been prepared for your benefit and no other party. Other parties should not rely upon the report or the accuracy or completeness of any recommendation and should make their own enquiries and obtain independent advice in relation to such matters.

Coffey assumes no responsibility and will not be liable to any other person or organisation for, or in relation to, any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report.

To avoid misuse of the information presented in your report, we recommend that Coffey be consulted before the report is provided to another party who may not be familiar with the background and the purpose of the report. In particular, an environmental disclosure report for a property vendor may not be suitable for satisfying the needs of that property's purchaser. This report should not be applied for any purpose other than that stated in the report.

Interpretation by other professionals

Costly problems can occur when other professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, a suitably qualified and experienced environmental consultant should be retained to explain the implications of the report to other professionals referring to the report and then review plans and specifications produced to see how other professionals have incorporated the report findings.

Given Coffey prepared the report and has familiarity with the site, Coffey is well placed to provide such

Coffey Environments Australia Pty Ltd ABN 65 140 765 902 Issued: 22 October 2013 assistance. If another party is engaged to interpret the recommendations of the report, there is a risk that the contents of the report may be misinterpreted and Coffey disowns any responsibility for such misinterpretation.

Data should not be separated from the report

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way. Logs, figures, laboratory data, drawings, etc. are customarily included in our reports and are developed by scientists or engineers based on their interpretation of field logs, field testing and laboratory evaluation of samples. This information should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

This report should be reproduced in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties.

Responsibility

Environmental reporting relies on interpretation of factual information using professional judgement and opinion and has a level of uncertainty attached to it, which is much less exact than other design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded. As noted earlier, the recommendations and findings set out in this report should only be regarded as interpretive and should not be taken as accurate and complete information about all environmental media at all depths and locations across the site.

Appendix A – Figures

		ond s		SE
	c St	X	Telford	
	Pacifi	Z	12	Zaar
				at a
	U.	-	1	AN A
	E.	N.	i je	
e e e e e e e e e e e e e e e e e e e			1	
and and the				
CRESCENT NEW	CASTLE PT	Y LTD		
PROPOSED RESIDEN NBN SITE 11-17 MOSBF PRELIMINARY CONTAM	ITIAL DEVE RI CRESCEN IINATION AS	OPMENT	L NT	
SITE LOCA	TION PLAN			
^{0:} 754-NTLGE220504	figure no:	FIGURE	1	^{rev:} A

S\NTLGE220000 - NTLGE229999\7	- All	Call.	1							
PROJECT	no.	description	drawn	approved	date	LEGEND				
CASTLE	А	ORIGINAL ISSUE								
S/NEWC			+		<u> </u>					
OB FILE										
ICS/1. JC										
EOTECHN						AERIAL IMAGE SOURCE: GOOGLE EARTH PRO 7.1.2 AERIAL IMAGE ©: SINCLAIR KNIGHT MERZ 2014				
S FILE: F:\GE			drawn SJB			client: CRESCENT NEWCASTLE PTY LTD				
DWG M41		5 0 5 10 15 20	approved	d	PW	PROPOSED RESIDENTIAL DEVELOPMENT				
18 12:54:5-	Scale (metres) 1:600			30	/10/2018	Coffey PRELIMINARY CONTAMINATION ASSESSMENT				
30/10/20				scale AS SHOWN		title: BOREHOLE LOCATION PLAN				
PLOT DATE			original size		A3	project no: 754-NTLGE220504 figure no: FIGURE 2 rev:				

Appendix B – Tables

							Field_ID	BH01 0.5	BH01 1.0	BH02 0.1	BH02 0.5	BH03 0.4M	BH03 0.7-1.0M	BH04 0.5	BH04 1.0	BH04 3.0
							Sampled_Date	03-Sep-18	03-Sep-18	10-Sep-18	10-Sep-18	17-Sep-18	17-Sep-18	12-Sep-18	12-Sep-18	12-Sep-18
			1										1			
				HII.A (1)	HIL-B (2)	HIL-C ⁽³⁾	HIL-D ⁽⁴⁾									
Method_Type	ChemName	Units	EQL													
Heavy Metal	Arsenic	mg/kg	2	100	500	300	3000	12	8.6	6.1	10	3.4	7.6	4.8	4.7	2
	Cadmium	mg/kg	0.4	20	150	90	900	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	0.5	<0.4
	Chromium	mg/kg	5					13	14	16	12	6.3	20	13	39	5.3
	Copper	mg/kg	5	6000	30000	17000	240000	16	18	13	16	6	9.8	11	14	6.1
	Lead	mg/kg	5	300	1200	600	1500	57	66	23	29	8	23	56	83	24
	Mercury	mg/kg	0.1	40	120	80	730	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Zinc	mg/kg	5 E	400	60000	20000	400000	6	<0	5.1		41	33	67	5	22
	Ashestos	D/A	-	7400	00000	30000	400000	32	/3	55	Absent	Absent	Absent	Absent	230	33
Inorganic	Moisture Content (dried @ 103°C)	F/A %	1					16	18	8.1	19	18	18	11	93	13
OCP	4 4-DDF	me/ke	0.05					<0.05		-	<0.05	<0.05	<0.05	<0.05	-	
	a-BHC	mg/kg	0.05					< 0.05	-	-	< 0.05	< 0.05	<0.05	< 0.05	-	-
	Aldrin	mg/kg	0.05					<0.05	-	-	< 0.05	<0.05	<0.05	< 0.05	-	-
	Aldrin + Dieldrin	mg/kg	0.05	6	10	10	45	< 0.05	-	-	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	b-BHC	mg/kg	0.05					< 0.05	-	-	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	Chlordane	mg/kg	0.1	50	90	70	530	<0.1	-	-	<0.1	<0.1	<0.1	<0.1	-	-
	d-BHC	mg/kg	0.05					<0.05	-	-	< 0.05	<0.05	< 0.05	< 0.05	-	-
	DDD	mg/kg	0.05					< 0.05	-	-	< 0.05	< 0.05	< 0.05	< 0.05	-	-
	DDT	mg/kg	0.05					<0.05			< 0.05	< 0.05	<0.05	< 0.05		
	DDT+DDE+DDD	mg/kg	0.05	240	600	400	3600	<0.05	-	-	< 0.05	<0.05	<0.05	< 0.05	-	
	Dieldrin	mg/kg	0.05					<0.05	-		< 0.05	<0.05	<0.05	<0.05	-	
	Endosultan I	mg/kg	0.05					<0.05	-	· ·	<0.05	< 0.05	<0.05	< 0.05	-	
	Endosultan II	mg/kg	0.05					<0.05	-	· ·	<0.05	< 0.05	<0.05	< 0.05	-	
	Endosultan sulphate	mg/kg	0.05		27	22		<0.05	-		< 0.05	< 0.05	<0.05	< 0.05		
	Engrin	mg/kg	0.05	10	20	20	100	<0.05			< 0.05	< 0.05	<0.05	< 0.05		
	Endrin aldenyde	mg/kg	0.05					<0.05			<0.05	< 0.05	<0.05	< 0.05		
	a-BHC (Lindane)	mg/kg	0.05					<0.05			<0.05	<0.05	<0.05	<0.05	+	+
	Hentachlor	ma/ka	0.05	6	10	10	50	<0.05	<u> </u>	<u> </u>	<0.05	<0.05	<0.05	<0.05	+	+
	Heptachior apovido	mg/kg	0.05	0	10	10	50	<0.05	-	-	<0.05	<0.05	<0.05	<0.05	-	-
	Herschlorebonzone	mg/kg	0.05	10	15	10	80	<0.05	-	-	<0.05	<0.05	<0.05	<0.05	-	
	Methoxychlor	mg/kg	0.05	300	500	400	2500	<0.05	-		<0.05	<0.03	<0.03	<0.05		
	Toxanhene	mg/kg	1	20	30	30	160	<1			<1	<1	<1	<1		
	Vic EPA IWRG 621 OCP (Total)*	MG/KG	0.1					<0.1	-		<0.1	<0.1	<0.1	<0.1	-	-
	Vic EPA IWRG 621 Other OCP (Total)*	MG/KG	0.1					<0.1	-	-	<0.1	<0.1	<0.1	<0.1	-	-
Organic	Naphthalene	mg/kg	0.5					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
-	F2-NAPHTHALENE	mg/kg	50					<50	<50	<50	<50	<50	<50	<50	<50	<50
	C6 - C9	mg/kg	20					<20	<20	<20	<20	<20	<20	<20	<20	<20
	C10 - C40 (Sum of total)	mg/kg	100					<100	<100	1520	<100	<100	<100	<100	130	<100
	C6-C10 less BTEX (F1)	mg/kg	20					<20	<20	<20	<20	<20	<20	<20	<20	<20
	C10-C16	mg/kg	50					<50	<50	<50	<50	<50	<50	<50	<50	<50
	C16-C34	mg/kg	100					<100	<100	520	<100	<100	<100	<100	130	<100
	C34-C40	mg/kg	100					<100	<100	1000	<100	<100	<100	<100	<100	<100
	C6 - C10	mg/kg	20					<20	<20	<20	<20	<20	<20	<20	<20	<20
PAH	Acenaphthene	mg/kg	0.5					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Acenaphthylene	mg/kg	0.5					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Renze(a)anthracene	mg/kg	0.5					<0.5	0.5	<0.5	-0.5	<0.5	<0.5	1.2	1.1	<0.5
	Benzo(a)purene	ma/ka	0.5					<0.5	0.0	<0.5	<0.5	<0.5	<0.5	1.3	1.1	<0.5
	Benzo(a)pyrene TEO (lower bound) *	MG/KG	0.5					<0.5	1.2	<0.5	<0.5	<0.5	<0.5	1.4	1.6	<0.5
	Benzo(a)nyrene TEO (medium bound) *	MG/KG	0.5	3	4	4	40	0.6	14	0.6	0.6	0.6	0.6	2.1	1.8	0.6
	Benzo(a)pyrene TEQ (upper bound) *	MG/KG	0.5					1.2	1.7	1.2	1.2	1.2	1.2	2.3	2.1	1.2
	Benzo(g,h,i)perylene	mg/kg	0.5					<0.5	0.5	<0.5	<0.5	<0.5	<0.5	0.8	0.9	<0.5
	Benzo(k)fluoranthene	mg/kg	0.5					<0.5	0.7	<0.5	<0.5	<0.5	<0.5	1	0.9	<0.5
	Chrysene	mg/kg	0.5					<0.5	0.9	<0.5	<0.5	<0.5	<0.5	1.2	1	<0.5
	Benzo[b+j]fluoranthene	mg/kg	0.5					<0.5	0.7	<0.5	<0.5	<0.5	<0.5	1	0.9	<0.5
	Dibenz(a,h)anthracene	mg/kg	0.5					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Fluoranthene	mg/kg	0.5					0.7	1.9	<0.5	<0.5	<0.5	<0.5	3.3	2.8	<0.5
	Huorene	mg/kg	U.5					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.5					<0.5	0.5	<0.5	<0.5	<0.5	<0.5	0.7	0.6	<0.5
	Phenanthrene	mg/kg	0.5					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Durana	ma/ka	0.5					~U.5 0.6	0.7	<0.5	<0.5	<0.5	<0.5	2.0	2.3	<0.5
	Total PAHs	mg/kg	0.5	300	400	300	4000	13	8.9	<0.5	<0.5	<0.5	<0.5	15.6	13.1	<0.5
PCB	Arochlor 1221	me/ke	0.1	550	430	500	4000	<0.1	0.7		<0.5	<0.5	<0.1	<0.1		-0.0
1.22	Aroclor 1016	mg/kg	0.1					<0.1	-	· ·	<0.1	<0.5	<0.5	<0.1	-	
	Aroclor 1232	mg/kg	0.1					<0.1	-	-	<0.1	<0.5	<0.5	<0.1	-	
	Aroclor 1242	mg/kg	0.1					<0.1	-		<0.1	<0.5	<0.5	<0.1	-	
	Aroclor 1248	mg/kg	0.1					<0.1	-		<0.1	<0.5	<0.5	<0.1	-	-
	Aroclor 1254	mg/kg	0.1					<0.1	-	-	<0.1	<0.5	<0.5	<0.1	-	
	Aroclor 1260	mg/kg	0.1					<0.1	-	-	<0.1	<0.5	<0.5	<0.1	-	-
	PCBs (Sum of total)	mg/kg	0.1	1	1	1	7	<0.1	-	-	<0.1	<0.5	<0.5	<0.1	-	-
TPH	C10 - C14	mg/kg	20					<20	<20	<20	<20	<20	<20	<20	<20	<20
	C15 - C28	mg/kg	50					<50	<50	78	<50	<50	<50	62	90	<50
	C29 - C36	mg/kg	50					<50	<50	690	<50	<50	<50	<50	70	<50
	C10 - C36 (Sum of total)	mg/kg	50					<50	<50	768	<50	<50	<50	62	160	<50
Volatile	Benzene	mg/kg	0.1					<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Ethylbenzene	mg/kg	0.1					<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Toluene	mg/kg	0.1					<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Xylene (m & p)	mg/kg	U.2					<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	Aylene (0)	mg/kg	0.1					<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
L	Recult	Concerts	I ^{U.3}	reads adopted k	health Investigation	ritaria - Decidential A	Soil	NJ.3	×U.3	<0.3	<0.3	<0.3	\$0.3	<0.3	<0.3	×0.3
	Result	Concentra	ation ex	ceeds adopted Human	n Health Investigation of	riteria - Residential-R	Soil									

 Result
 Concentration exceeds adopted Human Health Investigation criteria - Recreational-C Soil

 Result
 Concentration exceeds adopted Human Health Investigation criteria - Commercial Industrial-D Soil

Not Analysed
Present
A Absent
Not Analysed
Not Analysed
Present
A Absent
Not Process
Not strial)

								Field ID	BH01.0.5	BH0110	BH02.0.1	BH02.0.5	8H03.0.4M	BH03.0.7-1.0M	BH04.0.5	BH0410	BH04.3.0
								famala Data	03.010	03.644.10	10.0= 10	10.6== 10	17.5 10	17.6 10	13.0	13.6 10	12 (10
								Sample Date	03-3ep-18	03-3ep-18	10-3ep-18	10-3ep-18	17-3ep-18	17-Sep-18	12-3ep-18	12-3ep-18	12-3ep-18
				1101 - 10(1)			HSL-D ⁽⁴⁾	HSL-intrusive									
Method_Type	ChemName	Units	EQL	HSL-A/B	HSL-A/B**	HSL-D""		maintenance									
Herroy Metal	Arranic	ma/ka	2					WORKER	12	8.6	61	10	2.4	7.6	4.9	4.7	2
incury incur	Cadmium	mg/kg	0.4						<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	0.5	<0.4
	Chromium	mg/kg	5						13	14	16	12	6.3	20	13	39	5.3
	Copper	mg/kg	5						16	18	13	16	6	9.8	11	14	6.1
	Lead	mg/kg	5						57	66	23	29	8	23	56	83	24
	Nickel	mg/kg	5						<0.1	5	51	5	5	<0.1	5	5	×0.1
	Zinc	mg/kg	5						52	79	59	27	11	22	67	230	33
Inorganic	Moisture Content (dried @ 103°C)	%	1						16	18	8.1	19	18	18	11	9.3	13
OCP	4,4-DDE	mg/kg	0.05						<0.05			<0.05	<0.05	<0.05	<0.05		
	a-BHC	mg/kg	0.05						<0.05	-		<0.05	<0.05	<0.05	<0.05		
	Aldrin + Dieldrin	mg/kg	0.05						40.05			<0.03	<0.05	40.05	<0.05		
	b-BHC	mg/kg	0.05						<0.05			<0.05	<0.05	<0.05	<0.05		
	Chlordane	mg/kg	0.1						<0.1			<0.1	<0.1	<0.1	<0.1		
	d-BHC	mg/kg	0.05						<0.05			<0.05	<0.05	<0.05	<0.05		
	000	mg/kg	0.05						40.05			<0.05	<0.05	40.05	10.05		
	DDT+DDE+DDD	mg/kg	0.05						<0.05			<0.05	<0.05	<0.05	<0.05		
	Dieldrin	mg/kg	0.05						<0.05			<0.05	<0.05	<0.05	<0.05		
	Endosulfan I	mg/kg	0.05						<0.05			<0.05	<0.05	<0.05	<0.05		
	Endosultan II	mg/kg	0.05						<0.05			<0.05	<0.05	<0.05	<0.05		
	Endosuran sulphate Endrin	mg/kg	0.05						40.05			<0.05 <0.05	<0.05	40.05	40.05		
	Endrin aldehvde	mg/kg	0.05						<0.05			<0.05	<0.05	<0.05	<0.05		
	Endrin ketone	mg/kg	0.05						<0.05			<0.05	<0.05	<0.05	<0.05		
	g-BHC (Lindane)	mg/kg	0.05						<0.05			<0.05	<0.05	<0.05	<0.05		
	Heptachlor	mg/kg	0.05						<0.05			<0.05	<0.05	<0.05	<0.05		
	Heptachlor epoxide	mg/kg	0.05						<0.05			<0.05	<0.05	<0.05	<0.05		
	Methoxychlor	mg/kg	0.05						<0.05			<0.05	<0.2	<0.2	<0.05		
	Toxaphene	mg/kg	1						<1			<1	4	<1	<1		
	Vic EPA IWRG 621 OCP (Total)*	MG/KG	0.1						<0.1			<0.1	<0.1	<0.1	<0.1		
	Vic EPA IWRG 621 Other OCP (Total)*	MG/KG	0.1						<0.1			<0.1	<0.1	<0.1	<0.1		
Organic	Naphthalene	mg/kg	0.5	3	9				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	C6 - C9	mg/kg	20						<20	20	<20	<20	<20	<20	<20	<20	<20
	C10 - C40 (Sum of total)	mg/kg	100						<100	<100	1520	<100	<100	<100	<100	130	<100
	C6-C10 less BTEX (F1)	mg/kg	20	44	70	260	370		<20	<20	<20	<20	<20	<20	<20	<20	<20
	C10-C16	mg/kg	50	110	240				<50	<0	<50	<50	<50	<50	<50	<50	<50
	C16-C34	mg/kg	100						<100	<100	520	<100	<100	<100	<100	130	<100
	C34-C40	mg/kg	20						<100	<100	1000	<100	<100	<100	<100	<100	<100
PAH	Acenaphthene	mg/kg	0.5						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Acenaphthylene	mg/kg	0.5						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Anthracene	mg/kg	0.5						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5
	Benzo(a)anthracene	mg/kg	0.5						<0.5	0.6	<0.5	<0.5	<0.5	<0.5	1.3	1.1	<0.5
	Benzo(a)pyrene Renzo(a)pyrene TEO (lower bound) *	mg/kg MG/KG	0.5						<0.5	0.9	<0.5	40.5	<0.5	<0.5	1.4	1.2	<0.5
	Benzo(a)pyrene TEQ (medium bound) *	MG/KG	0.5						0.6	1.2	0.6	0.6	0.6	0.6	2.1	1.8	0.6
	Benzo(a)pyrene TEQ (upper bound) *	MG/KG	0.5						1.2	1.7	1.2	1.2	1.2	1.2	2.3	2.1	1.2
	Benzo(g,h,i)perylene	mg/kg	0.5						<0.5	0.5	<0.5	<0.5	<0.5	<0.5	0.8	0.9	<0.5
	Benzo(k)fluoranthene	mg/kg	0.5						<0.5	0.7	<0.5	<0.5	<0.5	<0.5	1	0.9	<0.5
	Benzo[b+i]fluoranthene	mg/kg	0.5						<0.5	0.9	<0.5	40.5	<0.5	<0.5	1.2	0.9	40.5
	Dibenz(a,h)anthracene	mg/kg	0.5						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Fluoranthene	mg/kg	0.5						0.7	1.9	<0.5	<0.5	<0.5	<0.5	3.3	2.8	<0.5
	Fluorene	mg/kg	0.5						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Indeno(1,2,3-c,d)pyrene	mg/kg	U.5	2					<0.5	0.5	<0.5	<0.5	<0.5	<0.5	0.7	0.6	<0.5
	Phenanthrene	mg/kg	0.5		,				<0.5	0.7	<0.5	<0.5	<0.5	<0.5	1.6	1.3	<0.5
	Pyrene	mg/kg	0.5						0.6	1.5	<0.5	<0.5	<0.5	<0.5	2.8	2.4	<0.5
	Total PAHs	mg/kg	0.5						1.3	8.9	<0.5	<0.5	<0.5	<0.5	15.6	13.1	<0.5
PCB	Arochlor 1221	mg/kg	0.1						<0.1			<0.1	<0.1	<0.1	<0.1		
	Arocior 1016	mg/kg	0.1						<0.1			<0.1	<0.5	<0.5	<0.1		
	Aroclor 1242	mg/kg	0.1						<0.1			<0.1	<0.5	<0.5	<0.1	-	
	Aroclor 1248	mg/kg	0.1						<0.1			<0.1	<0.5	<0.5	<0.1		
	Aroclor 1254	mg/kg	0.1						<0.1			<0.1	<0.5	<0.5	<0.1		
	Aroclor 1260 PCRr (Sum of total)	mg/kg	0.1						<0.1	-	-	<0.1	<0.5	<0.5	<0.1		-
ТРН	C10 - C14	mg/kg	20						<20	<20	<20	<20	<20	<20	<20	<20	<20
	C15 - C28	mg/kg	50						<50	<50	78	<50	<50	<50	62	90	<50
	C29 - C36	mg/kg	50						<50	<50	690	<50	<50	<50	<50	70	<50
	C10 - C36 (Sum of total)	mg/kg	50						<50	<50	768	<50	<50	<50	62	160	<50
Volatile	Benzene	mg/kg	0.1	0.5	0.5	3	3	77	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Toluene	mg/kg	0.1	57	220				<0.1 c0.1	40.1	<0.1 c0.1	<0.1	<0.1	<0.1 c0.1	40.1	<0.1	<0.1
	Xylene (m & p)	mg/kg	0.2	100					<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	Xylene (o)	mg/kg	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Xylene Total	mg/kg	0.3	40	59	230			<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
	Result	Exceeds	adopt	ed Health Screenin	ig Level (HSL) Vap	our Intrusion (HSL-	A, Low Density Re	sidential)									
	Result	Exceeds	adopt	ed Health Screenin	ig Level (HSL) Vap	our intrusion (HSL-I	s, High Density Re D. Commercialled	isidential)									
	Result	Exceeds	adorA	ed Health Screening	ig Level (HSL) Vap	our Intrusion (HSL-I	D. Commercial/Ind	ustrial)									
	Result	Exceeds	adopt	ed Health Screenin	ig Level (HSL) Vap	our Intrusion (Intrus	ive Maintenance V	/orker)									
	Notes:																

the Analysis in the Screening Levels for Vagour Intrusion, (Residential, Sand Om to +1.0m) NIRPC (2013) Soli Headh Screening Levels for Vagour Intrusion, (Residential, Sand Om to +1.0m) NIRPC (2013) Soli Headh Screening Levels for Vagour Intrusion, (ScreenicalInducatation for to -1.0m) NIRPC (2013) Soli Headh Screening Levels for Vagour Intrusion, (ScreenicalInducatation for to -2.0m) NIRPC (2013) Soli Headh Screening Levels for Vagour Intrusion, (ScreenicalInducatation for to -2.0m) NIRPC (2013) Soli Headh Screening Levels for Vagour Intrusion, (ScreenicalInducatation for to -2.0m) NIRPC (2013) Soli Headh Screening Levels for Vagour Intrusion, (ScreenicalInducatation for to -2.0m) NIRPC (2013) Soli Headh Screening Levels for Vagour Intrusion, (ScreenicalInducatation for to -2.0m) NIRPC (2013) Soli Headh Screening Levels for Vagour Intrusion, (ScreenicalInducatation for to -2.0m) NIRPC (2013) Soli Headh Screening Levels for Vagour Intrusion, (ScreenicalInducatation for to -2.0m) NIRPC (2013) Soli Headh Screening Levels for Vagour Intrusion, (ScreenicalInducatation for to -2.0m) NIRPC (2013) Soli Headh Screening Levels for Vagour Intrusion, (ScreenicalInducatation for to -2.0m) NIRPC (2013) Soli Headh Screening Levels for Vagour Intrusion, (ScreenicalInducatation for to -2.0m) NIRPC (2013) Soli Headh Screening Levels for Vagour Intrusion, (ScreenicalInducatation for to -2.0m) NIRPC (2013) Soli NIRPC (2015) Soliton (2016) NIRPC (2015) Soliton (2016) NIRPC (2016) NI

aaffay	•
coney	•
A TETRA TECH COMPANY	

Table LR3 Soil QAQC 11-17 Mosbri Crescent, Cooks Hill 754-NTLGE220504

Field Duplicates	(SOIL)		SDG	17-Sep-18	17-Sep-18		17-Sep-18			
Filter: SDG in('2	8 Sep 2018'.'17 Sep 2018')		Field ID	BH02 0.5	QC3	RPD	BH02 0.5	QC4	RPD	
	o cop 2010, 11 cop 2010,		Sample Date	10-09-18	10-09-18		10-09-18	10-09-18		
Method Type	ChemName	Units	EQL							
PAH	Benzo(a)pyrene TEQ (half LOR)	mg/kg	0.5	0.6	0.6	0	0.6	0.6	0	
	Benzo(a)pyrene TEQ (LOR)	mg/kg	0.5	1.2	1.2	0	1.2	1.2	0	
	Benzo(a)pyrene TEQ (zero)	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	
Organic	C6-C10 less BTEX (F1)	ma/ka	20 (Primarv): 10	<20.0	<20.0	0	<20.0	<10.0	0	
Volatile	Benzene	mg/kg	0.1 (Primary): 0.2	<0.1	<0.1	0	<0.1	<0.2	0	
	Ethylbenzene	mg/kg	0.1 (Primary): 0.5	<0.1	<0.1	0	<0.1	<0.5	0	
	Toluene	mg/kg	0.1 (Primary): 0.5	<0.1	<0.1	0	<0.1	<0.5	0	
	Xylene (m & p)	mg/kg	0.2 (Primary): 0.5	<0.2	<0.2	0	<0.2	<0.5	0	
	Xylene (o)	mg/kg	0.1 (Primary): 0.5	<0.1	<0.1	0	<0.1	<0.5	0	
	Xylene Total	mg/kg	0.3 (Primary): 0.5	< 0.3	< 0.3	0	< 0.3	< 0.5	0	
Inorganic	Moisture Content (dried @ 103°C	%	1	19.0	19.0	0	19.0			
Heavy Metal	Arsenic	mg/kg	2 (Primary): 5 (In	10.0	8.6	15	10.0	10.0	0	
	Cadmium	mg/kg	0.4 (Primary): 1 (<0.4	<0.4	0	<0.4	<1.0	0	
	Chromium	mg/kg	5 (Primary): 2 (In	12.0	13.0	8	12.0	13.0	8	
	Copper	mg/kg	5	16.0	14.0	13	16.0	13.0	21	
	Lead	mg/kg	5	29.0	22.0	27	29.0	18.0	47	
	Mercury	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.1	0	
	Nickel	mg/kg	5 (Primary): 2 (In	<5.0	<5.0	0	<5.0	2.0	0	
	Zinc	mg/kg	5	27.0	25.0	8	27.0	23.0	16	
OCP	4,4-DDE	mg/kg	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0	
	a-BHC	mg/kg	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0	
	Aldrin	mg/kg	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0	
	Aldrin + Dieldrin	mg/kg	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0	
	b-BHC	mg/kg	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0	
	Chlordane	mg/kg	0.1 (Primary): 0.0	<0.1	<0.1	0	<0.1	< 0.05	0	
	d-BHC	mg/kg	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0	
	DDD	mg/kg	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0	
	DDT	mg/kg	0.05 (Primary): 0.	< 0.05	< 0.05	0	< 0.05	<0.2	0	
	DDT+DDE+DDD	mg/kg	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0	
	Dieldrin	mg/kg	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0	
	Endosulfan I	mg/kg	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0	
	Endosulfan II	mg/kg	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0	
	Endosulfan sulphate	mg/kg	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0	
	Endrin	mg/kg	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0	
	Endrin aldehyde	mg/kg	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0	
	Endrin ketone	mg/kg	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0	
	g-BHC (Lindane)	mg/kg	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0	
	Heptachlor	mg/kg	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0	
	Heptachlor epoxide	mg/kg	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0	
	Hexachlorobenzene	mg/kg	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0	
	Methoxychlor	mg/kg	0.05 (Primary): 0.	< 0.05	< 0.05	0	< 0.05	<0.2	0	
	Toxaphene	mg/kg	1	<1.0	<1.0	0	<1.0			
	Vic EPA IWRG 621 OCP (Total)*	mg/kg	0.1	<0.1	<0.1	0	<0.1			
	Vic EPA IWRG 621 Other OCP (mg/kg	0.1	<0.1	<0.1	0	<0.1			
Organic	Naphthalene	mg/kg	0.5 (Primary): 1 (<0.5	<0.5	0	<0.5	<0.5	0	
PAH	Acenaphthene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	
	Acenaphthylene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	
	Anthracene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	
	Benzo(a)anthracene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	
	Benzo(a)pyrene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	
	Benzo(g,h,i)perylene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	
	Benzo(k)fluoranthene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	
	Chrysene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	
	Benzo[b+j]fluoranthene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	
	Dibenz(a,h)anthracene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	
	Fluoranthene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	
	Fluorene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	
	Naphthalene	mg/kg	0.5 (Primary): 1 (<0.5	<0.5	0	<0.5	<0.5	0	
	Phenanthrene	mg/kg	0.5	< 0.5	<0.5	0	< 0.5	<0.5	0	
	Pyrene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	
	Total PAHs	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	
Organic	F2-NAPHTHALENE	mg/kg	50	<50.0	<50.0	0	<50.0	<50.0	0	
	C6 - C9	mg/kg	20 (Primary): 10	<20.0	<20.0	0	<20.0	<10.0	0	
	C10 - C40 (Sum of total)	mg/kg	100 (Primary): 50	<100.0	<100.0	0	<100.0	<50.0	0	
	C10-C16	mg/kg	50	<50.0	<50.0	0	<50.0	<50.0	0	
	C16-C34	mg/kg	100	<100.0	<100.0	0	<100.0	<100.0	0	
	C34-C40	mg/kg	100	<100.0	<100.0	0	<100.0	<100.0	0	
	C6 - C10	mg/kg	20 (Primary): 10	<20.0	<20.0	0	<20.0	<10.0	0	
1PH	C10 - C14	mg/kg	20 (Primary): 50	<20.0	<20.0	0	<20.0	<50.0	0	
	C15 - C28	mg/kg	50 (Primary): 100	<50.0	<50.0	0	<50.0	<100.0	0	
	C29 - C36	mg/kg	50 (Primary): 100	<50.0	<50.0	0	<50.0	<100.0	0	
	C10 - C36 (Sum of total)	mg/kg	50	<50.0	<50.0	0	<50.0	<50.0	U	

*RPDs have only been considered where a concentration is greater than 0 times the EQL. **High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 50 (0-10 x EQL); 30 (10-20 x EQL); 30 (> 20 x EQL)) ***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

Appendix C – Historical Title Search
ADVANCE LEGAL SEARCHERS PTY LTD

(ACN 147 943 842) ABN 82 147 943 842

18/36 Osborne Road, Manly NSW 2095
 Telephone:
 +612 9977 6713

 Mobile:
 0412 169 809

 Email:
 search@alsearchers.com.au

27th September 2018

COFFEY ENVIRONMENTS PTY LTD 19 Warabrook Boulevard, WARABROOK NSW 2304

Attention: Sean Blackford

RE:

11 – 17 Mosbri Crescent, The Hill PO WARA18-1033

Current Search

Folio Identifier 1/204077 (title attached) DP 204077 (plan attached) Dated 26th September 2018 Registered Proprietor: **NBN LIMITED**

Title Tree Lot 1 DP 204077

Folio Identifier 1/204077

Certificate of Title Volume 14876 Folio 122

IVA 56532

Conveyance Book 2572 No. 435

Conveyance Book 2461 No. 868

Conveyance Book 2206 No. 650

Summary of Proprietor(s) Lot 1 DP 204077

Year

Proprietor(s)

	(Lot 1 DP 204077)			
1987 – todate	NBN Limited			
(1988 – todate)	(various leases shown on Historical Folio 1/204077)			
	(Lot 1 DP 204077 – CTVol 14876 Fol 122)			
1982 – 1987	NBN Limited			
	(previously Newcastle Broadcasting and Television Corporation			
	Limited)			
	(Part Lot 40 Section F Newcastle of the Australian Agricultural			
	Company's subdivision and other land – Area 3 Acres 3 ½ Perches –			
	Conv Book 2572 No. 435)			
1961 – 1982	Newcastle Broadcasting and Television Corporation Limited			
	(Part Lot 40 Section F of the Australian Agricultural Company's			
	subdivision – Area 13 Acres 2 Roods 26 Perches – Conv Book 2461			
	No. 838)			
1958 – 1961	Orrett Bros. Pty. Limited			
	(Lot 40 Section F of the Australian Agricultural Company's			
	subdivision and other land – Area 13 Acres 3 Roods 17 ³ / ₄ Perches –			
	Conv Book 2206 No. 650)			
1952 – 1958	Cecil Kay Orrett, master builder			
	(Portion 268A Parish Newcastle – Crown Grant)			
1847 - 1952	Australian Agricultural Company			

3

Cadastral Records Enquiry Report : Lot 1 DP 204077 Locality : THE HILL

Parish : NEWCASTLE

Locality : THE HILL LGA : NEWCASTLE

County : NORTHUMBERLAND

Report Generated 11:45:04 AM, 26 September, 2018 Copyright © Crown in right of New South Wales, 2017 This information is provided as a searching aid only.Whilst every endeavour is made to ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps

		Cadastral Records	<u>1 DP 204077</u>	Ref : NOUSER	
	SW REGISTRY	Locality : THE HILL		Parish : NEWCASTLE	
\searrow	SERVICES	LGA : NEWCASTLE		County : NORTHUMBERI	AND
		Status	Surv/Comp	Purpose	
DP950	65				
Lot(s):	5, 8 Section : F	DECISTEDED			
Lot(s).	5 Section · F	REGISTERED	SURVET	EAGEIWIEINT	
LOI(3).	CA87755 - LOT	5 SECTION F DP95065			
Lot(s):	8 Section : F				
	CA102286 - LO	F 8 SECTION F DP95065			
Lot(s):	2				
	👼 CA96805 - LOT	2 DP151768			
DP204	077				
Lot(s):	DP994077	HISTORICAL	UNAVAILABLE	UNRESEARCH	FD
DP216	346				
Lot(s):	8				
Let/e)	CA91724 - LOT	8 DP216346			
LOI(S).	Z0 CA91997 - LOT	20 DP216346			
DP270	136				
Lot(s):	35, 36, 42, 46, 47, 4	8, 49, 50, 51, 52, 53, 54, 55, 5	56		
Lot(c).	UP270136	HISTORICAL	SURVET	COMMUNITYP	LAN
L01(3).	DP270136	UNNECESSARY	SURVEY	COMMUNITY S	UBDIVISION PLAN
	🖳 DP270136	REGISTERED	SURVEY	COMMUNITY R	EPLACEMENT SHEET
	🧕 DP1203012	REGISTERED	COMPILATION	EASEMENT	
DD400	SP64274	REGISTERED	COMPILATION	STRATA PLAN	
Lot(s):	56				
201(0).	🚰 CA92233 - LOT	56 DP1081334			
DP108	3008				
Lot(s):	324 🕮 CA93252 - LOTS	S 322 DP1083350 AND 324 F	P1083008		
DP108	3350				
Lot(s):	322		D (000000		
	CA93252 - LOT	5 322 DP1083350 AND 324 L	P1083008		
Lot(s):	62				
	🖳 DP95065	HISTORICAL	COMPILATION	UNRESEARCH	ED
DP109	6744 1228				
LUI(5).	Z30	1238 DP1096744			
DP114	1417				
Lot(s):	3, 4, 5				
DP117	5125	13 1-3 DF1141417			
Lot(s):	1, 2				
DD (00	💯 CA150337 - LOT	FS 1-2 DP1175125			
DP122	3553 88				
201(0).	🧕 DP1028200	HISTORICAL	COMPILATION	LIMITED FOLIC	CREATION
DP122	4986				
Lot(s):	910 DP1077536	HISTORICAL	COMPILATION		
	DP1203236	HISTORICAL	SURVEY	REDEFINITION	
	CA90870 - LOTS	S 3090-3091 DP1077536			
DP124	3109				
Lot(s):	100 DP95065	HISTORICAL			FD
	CA92446 - LOT	2 DP95065		UNICEDEARON	

 Caution:
 This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL

 ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.

		Cadastral Records E	Enquiry Report : Lot 1	DP 204077	Ref : NOUSER
NSW	REGISTRY	Locality : THE HILL	F	Parish : NEWCASTLE	
	SERVICES	LGA : NEWCASTLE	(County : NORTHUMBE	RLAND
		Status	Surv/Comp	Purpose	
SP64274					
	DP270136	HISTORICAL	SURVEY	COMMUNITY	SUBDIVISION PLAN
	DP270136	HISTORICAL	SURVEY	COMMUNITY	PLAN
SP67965					
	DP37666	HISTORICAL	SURVEY	UNRESEARC	CHED
SP78976					
	DP511613	HISTORICAL	SURVEY	SUBDIVISIO	N
	DP1112615	HISTORICAL	SURVEY	REDEFINITIO	N
SP80542					
	DP37666	HISTORICAL	SURVEY	UNRESEARC	CHED
	DP1088308	HISTORICAL	SURVEY	REDEFINITIO	N
SP85144					
	DP32721	HISTORICAL	SURVEY	UNRESEARC	CHED
	DP1159213	HISTORICAL	SURVEY	REDEFINITIO	N
SP87796					
	DP216346	HISTORICAL	SURVEY	SUBDIVISIO	N
	DP1181991	HISTORICAL	SURVEY	REDEFINITIO	N
Road Polygon Id	(s) [.] 105357656				
, gen la	EX-SUR 72/37 D	P449035			
Polvaon Id	(s): 105182078. 1	05204783. 105357656. 1053	80592, 105409222, 1055265	11. 105545145	
7	DP1242664	REGISTERED	SURVEY	SURVEY INF	ORMATION ONLY
Unidentifie	d				

Polygon Id(s): 100528004

UNCONVERTIBLE OLD SYSTEM LAND SUBJECT TO A RIGHT OF WAY. FEE REMAINS IN CROWN GRANT SERIAL 264 PAGE 1939 AND SERIAL 264 PAGE 1948. TITLE CREATION WILL REQUIRE A DEPOSITED PLAN OF SURVEY AND A PRIMARY APPLICATION BASED UPON ADVERSE POSSESSION

Locality : THE HILL

Parish : NEWCASTLE

SERVICES	LGA : NEWCASTLE	County : NORTHUMBERLAND
Plan	Surv/Comp	Purpose
DP32623	SURVEY	UNRESEARCHED
DP32721	SURVEY	UNRESEARCHED
DP37666	SURVEY	UNRESEARCHED
DP83143	SURVEY	UNRESEARCHED
DP95064	SURVEY	UNRESEARCHED
DP95065	COMPILATION	UNRESEARCHED
DP111490	COMPILATION	DEPARTMENTAL
DP112748	COMPILATION	DEPARTMENTAL
DP150789	SURVEY	UNRESEARCHED
DP150912	SURVEY	UNRESEARCHED
DP151104	COMPILATION	UNRESEARCHED
DP151768	COMPILATION	UNRESEARCHED
DP153708	SURVEY	UNRESEARCHED
DP195186	COMPILATION	DEPARTMENTAL
DP195410	COMPILATION	DEPARIMENTAL
DP199263	COMPILATION	DEPARIMENTAL
DP204077		SUBDIVISION
DP210340		SUBDIVISION
DP231043		
DF270130		
DP270136	SUBVEY	
DP270136	SURVEY	
DP518619	SURVEY	SUBDIVISION
DP522440	SURVEY	SUBDIVISION
DP701302	SURVEY	OLD SYSTEM CONVERSION
DP731701	COMPLIATION	DEPARTMENTAL
DP734215	COMPILATION	DEPARTMENTAL
DP735298	COMPILATION	DEPARTMENTAL
DP735333	COMPILATION	DEPARTMENTAL
DP738647	COMPILATION	DEPARTMENTAL
DP743080	COMPILATION	DEPARTMENTAL
DP743818	COMPILATION	DEPARTMENTAL
DP745366	COMPILATION	DEPARTMENTAL
DP779535	COMPILATION	DEPARTMENTAL
DP782549	COMPILATION	DEPARTMENTAL
DP783311	COMPILATION	DEPARTMENTAL
DP783631	COMPILATION	DEPARTMENTAL
DP786055	SURVEY	SUBDIVISION
DP786646	SURVEY	SUBDIVISION
DP788453	SURVEY	CONSOLIDATION
DP788614		
DP794850		
DP/9/300		
DP1007177		
DP1028343	COMPILATION	
DP1039465	COMPILATION	
DP1077043	COMPLIATION	DEPARTMENTAL
DP1081334	COMPLIATION	LIMITED FOLIO CREATION
DP1083008	COMPILATION	LIMITED FOLIO CREATION
DP1083350	COMPILATION	LIMITED FOLIO CREATION
DP1086561	SURVEY	SUBDIVISION
DP1096744	COMPILATION	LIMITED FOLIO CREATION
DP1141417	COMPILATION	LIMITED FOLIO CREATION
DP1175125	COMPILATION	LIMITED FOLIO CREATION
DP1223553	SURVEY	DELIMITATION
DP1224986	COMPILATION	CONSOLIDATION
DP1243109	COMPILATION	REDEFINITION
SP470	COMPILATION	STRATA PLAN
SP3058	COMPILATION	STRATA PLAN
SP6373	COMPILATION	STRATA PLAN
SP9745	COMPILATION	STRATA PLAN
SP13061	COMPILATION	STRATA PLAN
SP15517	COMPILATION	STRATA PLAN

Caution: This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.

Ref : NOUSER

Cadastral Records Enquiry Report : Lot 1 DP 204077

Locality : THE HILL LGA : NEWCASTLE

County : NORTHUMBERLAND

Parish : NEWCASTLE

Plan SP17819 SP18807 SP19610 SP21494 SP38452 SP43206 SP44009 SP55746 SP64274 SP67965 SP78976 SP80542 SP80542 SP85144 SP87796

Surv/Comp	
COMPILATION	

COMPILATION

Purpose
STRATA PLAN

 Caution:
 This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL

 ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.

(as defined in Section 28A Real Property Act, 1900).16-9-1982 ED(SB)3. Book 2574 No. 675 Easement for drainage affecting the part of the land above described shown so burdened in the plan hereon.

EW(SB) 4. Book 3199 No. 696 Easement to drain water affecting the part of the land above described shown so burdened in the plan hereon.

RG 2/64 5. Book 3399 No. 857 Mortgage to Commonwealth Trading Bank of Australia.

										X148 245 X2
			KED DEVLINGS) UNREGISTER	INA SNOITA	LON				•
• •										
									•	
		186HH76	व्यवगरग्रज्य भा	TF PUSARA D	H ENNK	henumend	MOJYAN	and 2	1781	1X_
CANCELLATIO	Registrat General		(penuluo:	oruenore (c	BARTICULARS SECOND	Ĩ				Ar ar
								·		
Registat Genera	<u></u>			р р корківток	аяатглая					
			continued)	CHEDULE (्रधान					
. Government Prin.	E. Foll 222	28⊅T			•		(sound 2) 10 2 og 10)	

Req:R329146 /Doc:DP 0204077 P /Rev:02-Nov-1994 /Sts:OK.OK /Pgs:ALL /Prt:26-Sep-2018 11:05 /Seq:1 of 1

248 15,590 WAR ARN 250 5 1/2 76.340 3ac. Or. 3/20 92.570 303 8 1/2 96,564 316 9 3/4 ≯ • 46 G.I. 151.708 497 A 3/4 C^{RE5} AC RU P НΛ MOSBRI 180'11/4 3 - 3 1/2 1.223 25 265 17 cO \times Site of proposed easement for drainage(<) 8' wide I, Reginald Frederick. Bruyn Signatures, Seals and Statements of Dedications and Easements. It has been agreed to create easements for drainage 8' wide of. Newcastle..... in favour of the Council of the City of Newcastle. a surveyor registered under the Surveyors Act, 1929, as amended, hereby certily that the survey represented in this plan THE COTICE IN THE CONTROL OF is accurate and has been made * (1) by me. (2) under my immediate supervision in accordance with the Survey Practice Firm by to theat y cons Regulations, 1933 and was completed on t 6-1-1961..... regolation of the Sciele Signature B. S. Syrum imported in the subscene of the structure decision of the test Surveyor registered under Surveyors Act, 1929 as amended. Datum Line of Azimuth. A-B the first frequencies and the first start of the second of counterprise by: Approved by Council. I hereby certify that the requirements of the Local Government Act, 1919 (other than the requirements for registration of plans), have been complied with by the applicant in relation to the proposed subdivision The property sugar and/or new roads set out herein. • . Subdivision No. 3516 ... Daye 5-6-1961 leest T. O/Durge D. Council Clerk ... † Insert date of survey. * Strike out either (1) or (2).

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE ------26/9/2018 1:18PM

FOLIO: 1/204077

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 14876 FOL 122

Recorded	Number	Type of Instrument	C.T. Issue
5/6/1987		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
27/11/1987		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
25/7/1988	X714862	MORTGAGE	EDITION 1
26/7/1996		AMENDMENT: LOCAL GOVT AREA	
13/6/1997	3005196	LEASE	EDITION 2
2/1/2007 2/1/2007	AC837988 AC837989	DISCHARGE OF MORTGAGE DISCHARGE OF MORTGAGE	EDITION 3
30/3/2007	AD24278	CAVEAT	
24/5/2007	AD135568	WITHDRAWAL OF CAVEAT	
18/10/2007	AD498142	MORTGAGE	EDITION 4
6/2/2013	AH536191	DISCHARGE OF MORTGAGE	EDITION 5

*** END OF SEARCH ***

advlegs

PRINTED ON 26/9/2018

Obtained from NSW LRS on 26 September 2018 01:18 PM AEST

© Office of the Registrar-General 2018

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 1/204077

SEARCH DATE	TIME	EDITION NO	DATE
26/9/2018	11:06 AM	5	6/2/2013

LAND

LOT 1 IN DEPOSITED PLAN 204077 AT NEWCASTLE LOCAL GOVERNMENT AREA NEWCASTLE PARISH OF NEWCASTLE COUNTY OF NORTHUMBERLAND TITLE DIAGRAM DP204077

FIRST SCHEDULE

NBN LIMITED

SECOND SCHEDULE (4 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 BK 2574 NO 675 EASEMENT FOR DRAINAGE AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
- 3 BK 3199 NO 696 EASEMENT TO DRAIN WATER AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
- 4 BK 2206 NO 650 LAND EXCLUDES MINERALS

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

advlegs

PRINTED ON 26/9/2018

Obtained from NSW LRS on 26 September 2018 11:06 AM AEST

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register.

© Office of the Registrar-General 2018

Appendix D – Historical Aerial Photographs

Historical Aerial 1 - 1954 Showing the Future Location of the NBN Building

Historical Aerial 2 - 1966 Showing the Newcastle Broadcasting and Television Corporation Building

Historical Aerial 3 - 1976 Showing an Expanded Newcastle Broadcasting and Television Corporation Building

Historical Aerial 4 - 1987 Showing more Expansion on the NBN Limited Building

Historical Aerial 5 - 1993 Generally Unchanged Site Arrangement

Historical Aerial 6 - 2004 Showing a Generally Unchanged Site Arrangement

Appendix E – Site Photographs

Photo 1: Reception Area, NBN Television Building

Photo 2: Looking east across the site with communications infrastructure visible on the roof

drawn	PRW		client:	Stronach Prop	erty Pty Ltd.	
approved	PW	coffey	project:	Preliminary Contamir	nation Asses	sment
date	10/29/2018	A TETRA TECH COMPANY	17 Mosbri Crescent, Cooks Hill			ill
scale	NTS		title:	SITE PHOTO	OGRAPHS	
original size	A4		project no:	754-NTLGE220504-AB	photo no:	1&2

Photo 3: Car parking on multiple terraced levels (western section of the Site)

Photo 4: Terracing of the landscape at the northern section of the Site.

drawn	PRW		client:	Stronach Prop	erty Pty Ltd.	
approved	PW	coffey	project:	Preliminary Contamir	nation Assessm	ent
date	10/29/2018	A TETRA TECH COMPANY	17 Mosbri Crescent, Cooks Hill			pment 11-
scale	NTS		title:	SITE PHOTO	OGRAPHS	
original size	A4		project no:	754-NTLGE220504-AB	photo no:	3&4

Photo 5: Asphalt surface condition in car park

Photo 6: Asphalt surface condition along internal roadway

drawn	PRW		client:	Stronach Prop	erty Pty Ltd.
approved	PW	coffey	project:	Preliminary Contamin	nation Assessment
date	10/29/2018	A TETRA TECH COMPANY	17 Mosbri Crescent, Cooks Hill		
scale	NTS		title:	SITE PHOTO	OGRAPHS
original size	A4		project no:	754-NTLGE220504-AB	photo no: 5&6

Photo 7: Cooling Tank on the eastern protion of the Site

Photo 8: Paint stored in shed on the eastern portion of the Site

drawn	PRW		client: Stronach Property Pty Ltd.			
approved	PW	cc 🌖	project:	t: Preliminary Contamination Assessment		
date	10/29/2018		Proposed Multi-Building Residential Development 11- 17 Mosbri Crescent, Cooks Hill title: SITE PHOTOGRAPHS			
scale	NTS					
original size	A4		project no:	754-NTLGE220504-AB	photo no: 7	&8

Photo 9: Scrap machinery on the eastern portion of the property

Photo 10: Satellite dish (disused) on the eastern portion of the property

drawn	PRW		client:	Stronach Prop	erty Pty Ltd.			
approved	PW		project:	Project: Preliminary Contamination Assessment				
date	10/29/2018	A TETRA TECH COMPANY	Proposed Multi-Building Residential Development 11- 17 Mosbri Crescent, Cooks Hill					
scale	NTS		title: SITE PHOTOGRAPHS					
original size	A4		project no:	754-NTLGE220504-AB	photo no:	9&10		

Photo 11: Stand-by generator located in the eastern section of the Site

Photo 12: Historic image of progression of construction taking place into the cut in the hill. Photo Credit (Unknown) -Sourced Newcastle Lost Facebook Page (September 2018)

drawn	PRW		client:	Stronach Property Pty Ltd.				
approved	PW		project:	Preliminary Contamination Assessment				
date	10/29/2018	A TETRA TECH COMPANY	Proposed Multi-Building Residential Development 11- 17 Mosbri Crescent, Cooks Hill					
scale	NTS		title:	e: SITE PHOTOGRAPHS				
original size	A4		project no:	754-NTLGE220504-AB	photo no:	11&12		

Appendix F – Section 10.7 Certificate

PLANNING CERTIFICATE

Section 10.7, Environmental Planning and Assessment Act 1979

To: Coffey Services Australia 19 Warabrook Boulevarde Warabrook NSW 2304
 Certificate No:
 PL2018/04107

 Fees:
 \$133.00

 Receipt No(s):
 D000947040

Your Reference: NTLEN220504

Date of Issue: 28/08/2018

The Land:Lot 1 DP 20407711-17 Mosbri Crescent The Hill NSW 2300

Advice provided on this Certificate:

Advice under section 10.7(2): see items 1 - 21Additional advice under section 10.7(5): see Items 22 - 30

IMPORTANT: Please read this certificate carefully

This certificate contains important information about the land.

Please check for any item which could be inconsistent with the proposed use or development of the land. If there is anything you do not understand, phone Council's **Customer Enquiry Centre** on (02) 4974 2000, or come in and see us.

The information provided in this certificate relates only to the land described above. If you need information about adjoining or nearby land, or about the Council's development policies for the general area, contact Council's **Customer Enquiry Centre**.

All information provided is correct as at 28/08/2018. However, it's possible for changes to occur within a short time. We recommend that you only rely upon a very recent certificate.

Newcastle City Council

PO Box 489 NEWCASTLE 2300

Phone: (02) 4974 2000 Facsimile: (02) 4974 2222 Customer Enquiry Centre Ground floor, 282 King Street Newcastle NSW 2300

Office hours: Mondays to Fridays 8.30 am to 5.00 pm

PART 1:

ADVICE PROVIDED UNDER SECTION 10.7(2)

ATTENTION: The explanatory notes appearing in italic print within Part 1 are provided to assist understanding, but do not form part of the advice provided under section 10.7(2). These notes shall be taken as being advice provided under section 10.7(5).

1. Names of relevant planning instruments and DCPs

The following environmental planning instruments, proposed environmental planning instruments and development control plans apply to the land, either in full or in part.

State Environmental Planning Policy No. 44 - Koala Habitat Protection

State Environmental Planning Policy No. 50 - Canal Estate Development

State Environmental Planning Policy No. 55 - Remediation of Land

State Environmental Planning Policy No. 62 - Sustainable Aquaculture

State Environmental Planning Policy No. 64 - Advertising and Signage

State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development

State Environmental Planning Policy (Housing For Seniors or People with a Disability) 2004

State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004

State Environmental Planning Policy (State Significant Precincts) 2005

State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007

State Environmental Planning Policy (Temporary Structures) 2007

State Environmental Planning Policy (Infrastructure) 2007

State Environmental Planning Policy (Exempt and Complying Development Codes) 2008

State Environmental Planning Policy (Affordable Rental Housing) 2009

State Environmental Planning Policy (State and Regional Development) 2011

State Environmental Planning Policy (Coastal Management) 2018

Newcastle Local Environmental Plan 2012

Newcastle Development Control Plan 2012

2. Zoning and land use under relevant LEPs

Newcastle Local Environmental Plan 2012

Zoning: The Newcastle Local Environmental Plan 2012 identifies the land as being within the following zone(s):

Zone R3 Medium Density Residential

Note: Refer to www.newcastle.nsw.gov.au or www.legislation.nsw.gov.au web site for LEP instrument and zoning maps.

The following is an extract from the zoning provisions contained in Newcastle Local Environmental Plan 2012:

Zone R3 Medium Density Residential

• Objectives of zone

- To provide for the housing needs of the community within a medium density residential environment.
- To provide a variety of housing types within a medium density residential environment.
- To enable other land uses that provide facilities or services to meet the day to day needs of residents.
- To allow some diversity of activities and densities if:
 - (i) the scale and height of proposed buildings is compatible with the character of the locality, and
 - (ii) there will be no significant adverse impact on the amenity of any existing nearby development.
- To encourage increased population levels in locations that will support the commercial viability of centres provided that the associated new development:
 - (i) has regard to the desired future character of residential streets, and
 - (ii) does not significantly detract from the amenity of any existing nearby development.

• Permitted without consent

Environmental protection works; Home occupations

• Permitted with consent

Attached dwellings; Boarding houses; Car parks; Child care centres; Community facilities; Educational establishments; Emergency services facilities; Exhibition homes; Exhibition villages; Flood mitigation works; Group homes; Health services facilities; Home-based child care; Home businesses; Multi dwelling housing; Neighbourhood shops; Places of public worship; Recreation areas; Residential accommodation; Respite day care centres; Roads; Seniors housing; Tourist and visitor accommodation

• Prohibited

Any development not specified in, permitted without consent or permitted with consent

Minimum land dimensions for erection of a dwelling-house: The Newcastle Local Environmental Plan 2012 contains development standards relating to minimum land dimensions for the erection of a dwelling house. Refer to clause 4.1 Minimum subdivision lot size and Part 4 Principle development standards of the Newcastle LEP 2012 for provisions relating to minimum lot sizes for residential development.

Critical habitat: The Newcastle Local Environmental Plan 2012 does not identify the land as including or comprising critical habitat.

Heritage conservation area: The land is not within a heritage conservation area under the Newcastle Local Environmental Plan 2012.

Heritage items: There are no heritage items listed in the Newcastle Local Environmental Plan 2012 situated on the land.

3. Complying development

Note Other requirements: The advice below for all Complying Development Codes, is limited to identifying whether or not the **land**, the subject of the certificate, is land on which complying development may be carried out because of Clauses 1.17A(1)(c) to (e), (2), (3) & (4), 1.18 (1)(c3) and 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 (the Codes SEPP).

To ascertain the extent to which the complying development may or may not be carried out on the land, maps are available on Council's web pages.

General Housing Code

Complying development under this Code may NOT be carried out on this land, as the land is affected by Specific land exemptions, being land that is excluded land identified by a policy adopted by Council as being a coastal hazard.

Rural Housing Code

Complying development under this Code may NOT be carried out on this land, as the land is affected by Specific land exemptions, being land that is excluded land identified by a policy adopted by Council as being a coastal hazard.

Housing Alterations Code

Complying development under the Housing Alterations Code MAY be carried out on this land.

General Development Code

Complying development under the General Development Code MAY be carried out on this land.

Commercial and Industrial Alterations Code

Complying development under the Commercial and Industrial Alterations Code MAY be carried out on this land.

Commercial and Industrial (New Buildings and Additions) Code

Complying development under this Code may NOT be carried out on this land, as the land is affected by Specific land exemptions, being land that is excluded land identified by a policy adopted by Council as being a coastal hazard.

Subdivision Code

Complying development under the Subdivision Code MAY be carried out on this land.

Demolition Code

Complying development under the Demolition Code MAY be carried out on this land.

Fire Safety Code

Complying development under the Fire Safety Code MAY be carried out on this land.

4B. Annual charges under Local Government Act 1993 for coastal protection services that relate to existing coastal protection works

The land IS NOT subject to an agreement for annual charges under section 496B of the Local Government Act 1993 for coastal protection services (within the meaning of section 553B of that Act).

5. Mine Subsidence Compensation Act 1961

The land IS within a proclaimed Mine Subsidence District under the Mine Subsidence Compensation Act 1961. The approval of the Mine Subsidence Board is required for all subdivision and building, except for certain minor structures. Surface development controls are in place to prevent damage from old, current or future mining. It is strongly recommended prospective purchasers consult with the Mine Subsidence Board regarding mine subsidence and any surface development guidelines. The Board can assist with information about mine subsidence and advise whether existing structures comply with the requirements of the Act.

NOTE: Plans of existing and abandoned mine workings are available for viewing at the Mine Subsidence Board's offices. For further clarification and details, contact the Mine Subsidence Board, 117 Bull Street, Newcastle West. Ph (02) 49084300.

6. Road widening or realignment

NOTE: The Roads and Maritime Services (RMS) may have proposals that are not referred to in this item. For advice about affectation by RMS proposals, contact the Roads and Maritime Services, Locked Mail Bag 30 Newcastle 2300. Ph: 131 782.

The land IS NOT AFFECTED by any road widening or road realignment under Division 2 of Part 3 of the Roads Act 1993.

The land IS NOT AFFECTED by any road widening or road realignment under an environmental planning instrument.

The land IS NOT AFFECTED by road widening or road realignment under a resolution of the Council.

7. Policies on hazard risk restrictions

Except as stated below, the land is not affected by a policy referred to in Item 7 of Schedule 4 of the Environmental Planning and Assessment Regulation 2000 that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

Potential acid sulfate soils: Works carried out on the land must be undertaken in accordance with Clause 6.1 Acid sulfate soils of the Newcastle Local Environmental Plan 2012.

Land Contamination: Council has adopted a policy of restricting development or imposing conditions on properties affected by Land Contamination. Refer to the Newcastle Development Control Plan 2012, which may be inspected or purchased at Council's Customer Enquiry Centre.

Bush fire: Under clause 5.11 Bush fire hazard reduction of the Newcastle LEP 2012, bush fire hazard reduction work authorised by the Rural Fires Act 1997 may be carried out on any land without development consent. *NOTE: The Rural Fires Act 1997 also makes provision relating to the carrying out of development on bush fire prone land.*

The Newcastle Coastal Zone Management Plan: This land has been identified in the *Newcastle Coastal Zone Management Plan* (NCC 2016) as having a current exposure to coastal <u>landslide</u> risk. The *Newcastle Coastal Zone Management Plan* (NCC 2016) is based on the *Newcastle Coastal Zone Hazards Study* (BMT WBM) completed in 2014 and endorsed by Council in November 2016, and reflects information available at that time. The *Newcastle Coastal Zone Management Plan* (NCC 2016) is available on Council's website <u>www.newcastle.nsw.gov.au</u>, or you can contact council for more information.

NOTE: The absence of a policy to restrict development of the land because of the likelihood of a particular risk does not imply that the land is free from that risk. The Council considers the likelihood of natural and man-made risks when determining development applications under section 4.15 of the Environmental Planning and Assessment Act 1979. Detailed investigation carried out in conjunction with the preparation or assessment of a development application may result in the Council either refusing development consent or imposing conditions of consent on the basis of risks that are not identified above.

7A. Flood related development controls information

Council's current information indicates the property is not flood prone land as defined in the Floodplain Development Manual: the management of flood liable land, April 2005 published by the NSW Government.

8. Land reserved for acquisition

The land is not identified for acquisition by a public authority (as referred to in section 3.15 of the Act) by any environmental planning instrument or proposed environmental planning instrument applying to the land.

9. Contributions plans

The following contribution plan/s apply to the land.

Section 94A Development Contributions Plan 2009 - August 2017:

The Plan specifies section 94A contributions that may be imposed as a condition of development consent.

NOTE: Contributions plans are available on Council's website or may be inspected or purchased at Council's Customer Enquiry Centre.

9A. Biodiversity certified land

The land IS NOT biodiversity certified land under Part 8 of the Biodiversity Conservation Act 2016.

10. Biodiversity stewardship sites

The land IS NOT land (of which the Council is aware) under a biodiversity stewardship agreement under Part 5 of the Biodiversity Conservation Act 2016.

10A. Native vegetation clearing set asides

The land IS NOT land (of which the Council is aware) that contains a set aside area under section 60ZC of the Local Land Services Act 2013.

11. Bush fire prone land

The land, either in whole or in part IS bush fire prone land for the purposes of the Environmental Planning and Assessment Act 1979.

12. Property vegetation plans

Not applicable. The Native Vegetation Act 2003 does not apply to the Newcastle local government area.

13. Orders under Trees (Disputes Between Neighbours) Act 2006

Council HAS NOT been notified that an order has been made under the Trees (Disputes between Neighbours) Act 2006 to carry out work in relation to a tree on the land.

14. Directions under Part 3A

The land IS NOT AFFECTED by a direction by the Minister in force under section 75P (2) (c1) of the Act.

15. Site compatibility certificates and conditions for seniors housing

(a) The land IS NOT AFFECTED by a current site compatibility certificate (of which the Council is aware) issued under the State Environmental Planning Policy (Housing for Seniors and People with a Disability) 2004.

(b) The land IS NOT AFFECTED by any terms of kind referred to in clause 18(2) of the State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004, that have been imposed as a condition of consent to a development application granted after 11 October, 2007 in respect of the land.

16. Site compatibility certificates for infrastructure, schools or TAFE establishments

The land IS NOT AFFECTED by a valid site compatibility certificate (of which the Council is aware) issued under the State Environmental Planning Policy (Infrastructure) 2007.

17. Site compatibility certificates and conditions for affordable rental housing

The land IS NOT AFFECTED by a valid site compatibility certificate (of which the Council is aware) issued under the State Environmental Planning Policy (Affordable Rental Housing) 2009.

18. Paper subdivision information

The land IS NOT AFFECTED by any development plan that applies to the land or that is proposed to be subject to a consent ballot.

19. Site verification certificates

The land IS NOT AFFECTED by a current site verification certificate (of which the Council is aware) issued under the State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007.

20. Loose-fill asbestos insulation

The Council HAS NOT been notified that the land includes any residential premises (within the meaning of Division 1A of Part 8 of the Home Building Act 1989) that are listed on the register of loose-fill asbestos insulation, that is required to be maintained under that Division.

21. Affected building notices and building product rectification orders

The land IS NOT AFFECTED by any affected building notice of which the council is aware that is in force in respect of the land.

The land IS NOT AFFECTED by any building product rectification order that has not been fully complied with, of which the council is aware that is in force in respect of the land.

The land IS NOT AFFECTED by an outstanding notice of intention to make a building product rectification order of which the council is aware.

An affected building notice has the same meaning as in Part 4 of the Building Products (Safety) Act 2017. Building product rectification order has the same meaning as in the Building Products (Safety) Act 2017.

Note: There are no matters prescribed by section 59(2) of the Contaminated Land Management Act 1997 to be disclosed, however if other contamination information is held by the Council this may be provided under a section 10.7(5) certificate.

PART 2:

ADVICE PROVIDED UNDER SECTION 10.7(5)

ATTENTION: Section 10.7(6) of the Act states that a Council shall not incur any liability in respect of advice provided in good faith pursuant to sub-section 10.7(5).

22. Outstanding Notices and Orders issued by Council.

Council records indicate that this premise IS NOT AFFECTED by a current notice or order (excluding the notices or orders mentioned in the note below).

NOTE: The Council has not inspected the premises immediately prior to the issue of this certificate. It is possible that the premises are affected by matters of which the Council is unaware.

NOTE: This Certificate does not include any advice regarding outstanding notices or orders issued under the Environmental Planning and Assessment Act 1979 or the Local Government Act 1993. To obtain advice regarding these matters, you should lodge an application for a Certificate as to Outstanding Notices and Orders (accompanied by the appropriate fee). For further information, please contact the Customer Enquiry Centre on (02) 4974 2000.

23. Further consent requirements under the Newcastle Local Environmental Plan 2012.

The following provisions of the Newcastle Local Environmental Plan 2012 affect the carrying out of development on the land. These provisions are in addition to those required to be disclosed at Item 2 of this Certificate.

Refer to clause 3.1 Exempt Development of the Newcastle Local Environmental Plan 2012

Refer to clause 3.2 Complying Development of the Newcastle Local Environmental Plan 2012

Note: The Newcastle Local Environmental 2012 may have additional provisions that affect the carry out of development. Refer to the Newcastle Local Environmental 2012 for the full affect it may have on the land or obtain profession advice for more information.

24. Suspension of covenants.

Refer to 1.9A Suspension of covenants, agreements and instruments of the Newcastle Local Environmental Plan 2012.

25. Draft development control plans.

A draft development control plan DOES NOT APPLY to the land. The draft plans are exhibited pursuant to Part 3 of the Environmental Planning and Assessment Regulation 2000.

26. Heritage Act 1977.

The land IS NOT AFFECTED by a listing on the State Heritage Register or an Interim Heritage Order that is in force under the Heritage Act 1977.

NOTE: The above advice is provided to the extent that Council has been notified by the Heritage Council of NSW. For up-todate details, contact the Office of Environment and Heritage, PO Box A290, South Sydney NSW 1232 Ph: (02) 9995 5000.

27. Listing by National Trust of Australia.

The land IS NOT AFFECTED by a listing of the National Trust of Australia (NSW).

NOTE: The above advice is provided to the extent that Council has been notified by the National Trust of Australia (NSW). For up-to-date details, contact the National Trust Ph 02 9258 0123.

28. Australian Heritage Database.

The land IS NOT AFFECTED by a listing on the Australian Heritage Database.

NOTE: The above advice is provided to the extent that Council has been notified by the Department of the Environment. For up-to-date details, contact the Department of the Environment, Heritage, King Edward Terrace, Parkes ACT 2600. Ph (02) 6274 1111.

29. Environment Protection & Biodiversity Conservation Act 1999 (Cth)

Under the (Commonwealth) Environment Protection and Biodiversity Conservation Act 1999, actions which have, may have or are likely to have, a significant impact on a matter of national environmental significance may be taken only with the approval of the Commonwealth Minister for the Environment.

Approval is also required for actions that have a significant effect on the environment of Commonwealth land. These actions may be on Commonwealth land or other land.

This approval is in addition to any approvals under the (NSW) Environmental Planning and Assessment Act 1979 or other NSW legislation.

Matters of national environmental significance are:

- declared World Heritage areas
- declared Ramsar wetlands
- listed threatened species and ecological communities
- · listed migratory species
- nuclear actions
- the environment of Commonwealth marine areas.

Locations within the City of Newcastle that are a declared Ramsar wetland include Kooragang Nature Reserve and Shortland Wetlands. Listed threatened species and listed migratory species are known to occur within the City of Newcastle.

30. Other matters

The land is affected by the following:

Newcastle earthquake

Earthquakes occurred in the vicinity of Newcastle on 28th December 1989 and 6 August 1994. Buildings on the land may have suffered damage as a consequence of the earthquakes. Prospective purchasers are advised to make their own enquiries as to whether the property is affected by any damage.

Local Planning Strategy
The Local Planning Strategy is the principal land use strategy for Newcastle. It was adopted by the Council on 28 July 2015. The Strategy is taken into account when the Council assesses development applications and amendments to the Newcastle Local Environmental Plan 2012.

Note: Refer to Council's website to view the document. www.newcastle.nsw.gov.au

Lower Hunter Regional Strategy (2006 - 2031)

The Lower Hunter Regional Strategy has been prepared by the Department of Planning and Infrastructure. The contents of the strategy will be taken into account when Council assesses development applications and amendments to the Newcastle Local Environmental Plan 2012.

Note: Refer to Council's website to view the document. www.newcastle.nsw.gov.au

Newcastle City-Wide Floodplain Risk Management Study and Plan (2012)

The Newcastle City-wide Floodplain Risk Management Study and Plan addresses flood management for the City of Newcastle. The Study and Plan will be taken into account when Council assesses development applications and amendments to the Newcastle Local Environmental Plan 2012.

Note: Refer to Council's website to view the document. www.newcastle.nsw.gov.au

Stormwater drain

The Council's records indicate that a stormwater drain passes through the land. A registered easement to drain water has not been created for this drain.

Issued without alterations or additions, 28/08/18 Authorised by JEREMY BATH CHIEF EXECUTIVE OFFICER Appendix G – Groundwater Bore Search

10/29/2018

NSW Office of Water Work Summary

GW202514

		County Form A: NORTH	Parish NORTH.44	Cadastre 14//1122031
Site Chosen By:				
Site Details				
GWMA. GW Zone:		Yield:		
Property:	N A 1 LAMAN STREET COOKS HILL 2300 NSW	Standing Water Level:		
Assistant Driller:	Cameron Gill			
Driller:	Andre Gisby			
Contractor Name:	Soilcheck			
Commenced Date: Completion Date:	28/08/2012	Final Depth : 6.00 m Drilled Depth : 6.00 m		
Owner Type:	Local Govt			
Construct.Method:	Auger - Solid Flight			
Work Status:	Equipped			
Work Type:	Bore			
		Authorised Purpose(s): MONIT Intended Purpose(s): MONIT	ORING BORE	
Licence:	20BL173249	Licence Status: ACTIVI	E	

		Licensed:		
Region:	20 - Hunter	CMA Map : 9232-2S		
River Basin: Area/District:	210 - HUNTER RIVER	Grid Zone:	Scale:	
Elevation: Elevation Source:	0.00 m (A.H.D.) Unknown	Northing: 6355835.0 Easting: 385268.0	Latitude: Longitude:	32°55'47.0"S 151°46'22.2"E
GS Map:	-	MGA Zone : 0	Coordinate Source:	GIS - Geographic Information System

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure

Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре	From (m)	To (m)	Outside Diameter (mm)	Inside Diameter (mm)	Interval	Details
1		Hole	Hole	0.00	6.00	100			Auger - Solid Flight
1		Annulus	Bentonite/Grout	0.00	1.00	100	50		PL:Poured/Shovelled
1		Annulus	Waterworn/Rounded	1.00	6.00	100	50		Graded, Q:0.013m3, PL:Poured/Shovelled
1	1	Casing	Pvc Class 18	0.00	6.00	50	46		Seated on Bottom, Screwed
1	1	Opening	Slots - Horizontal	1.80	6.00	50		1	Casing - Hand Sawn Slot, PVC Class 18, Screwed, SL: 45.0mm, A: 1.00mm

Water Bearing Zones

I	From	То	Thickness	WBZ Type	S.W.L.	D.D.L.	Yield	Hole	Duration	Salinity
	(m)	(m)	(m)		(m)	(m)	(L/s)	Depth	(hr)	(mg/L)
								(m)		

Geologists Log

Drillers Log

From	To	Thickness	Drillers Description	Geological Material	Comments
[(m)	(m)	(m)			
0.00	0.80	0.80	Fill	Fill	
0.80	4.20	3.40	Silty Clay, alluvial	Silty Clay	
4.20	6.00	1.80	Sand, alluvial, trace of clay	Sand	

Remarks

28/08/2012: Form A Remarks:

Nat Carling, 22-Oct-2012; Coordinates based on location map provided with the Form-A.

*** End of GW202514 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Appendix H – Contaminated Land Register Search

Home Contaminated land Record of notices

Search results

Your search for:LGA: Newcastle City Council Matched 103 notices relating to 21 sites. Search Again **Refine Search** Notices Suburb Address Site Name related to this site HAMILTON Clyde STREET Hamilton Gasworks 3 current and 4 former HAMILTON 116 Tudor STREET Taxi Services 4 former HAMILTON 56 Clyde STREET Black and Decker 1 current NORTH HAMILTON 54 Clyde STREET ELMA 1 current and NORTH 1 former 2 current and 2 former HAMILTON 5 Chatham STREET Shell Newcastle Terminal NORTH HEXHAM Sparke STREET 1 current Forgacs Site HEXHAM 64 Old Maitland ROAD <u>Trojay Pty Ltd</u> 1 current KOORAGANG Cormorant ROAD BHP Kooragang 1 current and 1 former KOORAGANG 15 Greenleaf ROAD <u>Orica Kooragang Island</u> 4 current and 9 f<u>ormer</u> MARYVILLE 184-188 Hannell STREET 7-Eleven (former Mobil) Service 1 current Station The Buffer Zone' extending MAYFIELD BHP Steel River 3 current and 1 former directly adjacent to the Hunter River; near the Tourle Street Bridge STREET MAYFIELD BHPB Supply site 3 current and 7 former MAYFIELD Industrial DRIVE 5 current and 1 former OneSteel (BHP) MAYFIELD East of Woodstock Street Koppers Coal Tar 2 current and and Tourle STREET 1 former WEST NEWCASTLE Bound by Hunter River, BHP Steelworks (Closure site) 9 current and Selwyn Street & Industrial 13 former DRIVE NEWCASTLE 26-28 Honeysuckle DRIVE Reclaimed Land 1 former SANDGATE Maitland ROAD North Limited Storage Handling 1 current and For business 7 former <u>facility</u> and industry SHORTLAND 1, 2 & 28 Astra STREET Former Astra St landfill 3 current and 3 former TARRO Woodland CLOSE Green Acres Farm 1 current TIGHES HILL 110 Elizabeth STREET Former Mobil Terminal 6 former For local 12

Page 1 of 2

10 October 2018

Contact us

government 🗌

131 555 (tel:131555)

info@epa.nsw.gov.au (mailto:info@epa.nsw.gov.au)

EPA Office Locations (https://www.epa.nsw.gov.au/about-us/contact-us/locations)

Accessibility (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/help-index) Disclaimer (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/disclaimer) Privacy (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/privacy) Copyright (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/copyright)

Find us on (https:///ttps:///ttps:///ttps:///ttps:///ttps:///ttps://ttps

https://apps.epa.nsw.gov.au/prcImapp/searchresults.aspx?&LGA=102&Suburb=&Notice=&Name=&Text=&DateFrom=&DateTo=

Matched 103 notices

12

Home Contaminated land Record of notices

Search results

Your search for:LGA: Newcastle City Council

		relating to 21 sites.	
		Refine Search	n
Address	Site Name	Notices related to this site	
156 Hannell STREET	Caltex Terminal	1 current	

Page 2 of 2

WICKHAM 156

Suburb

10 October 2018

For business and industry

For local government

Contact us

- □ 131 555 (tel:131555)
- info@epa.nsw.gov.au (mailto:info@epa.nsw.gov.au)
- EPA Office Locations (https://www.epa.nsw.gov.au/about-us/contact-us/locations)

Accessibility (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/help-index) Disclaimer (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/disclaimer) Privacy (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/privacy) Copyright (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/copyright)

Find us on

https:///ttpistle/ttpoon//WWB8401/infer

Appendix I – Borehole Logs

A TETRA TECH	COMPANY	Borehole ID.	BH01
Enai	nooring Log Boroholo	sheet:	1 of 14
Engi	neering Log - Borenole	project no.	754-NTLGE220504
client:	Crescent Newcastle Pty Ltd	date started:	03 Sep 2018
principal:		date completed:	07 Sep 2018
project:	Proposed Multi Building Residential Development	logged by:	MJ
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB

р	ositio	on: E::	885,6	19.90; N: 6	,355,6	84.10 (MGA9	4)	surface elevation: 31.39 m (AHD)	angle from horizontal: 90°						
d	rill m	odel: C	oma	chio 450P,	Track	k moun	ted		drilling fluid: non / water	hole	diamete	r : 96 mm				
Ľ	drilli	ng info	rmat	ion			mate	erial sub	stance			1	1			
mothord 8	support	penetration	water	samples & field tests	RL (m)	depth (m)	graphic log	classification symbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	hand penetro- meter (kPa)	structure and additional observations			
T			-	E	-31	-		CL-CI	FILL: BITUMEN: black, 50mm thick, fine to coarse gravel. FILL: Sandy CLAY: low to medium plasticity, grey, with fine grained cond	M <wp< td=""><td></td><td></td><td>FILL- WEARING COURSE</td></wp<>			FILL- WEARING COURSE			
				E	-	- - 1.0—			CLAY: high plasticity, grey and pale grey, with orange lamination.				RESIDUAL SOIL			
				D+E	30			CL-CI	CLAY : low to medium plasticity, pale brown and grey, orange laminations, with fine sand, trace of fine gravel.	<wp< td=""><td></td><td></td><td>-</td></wp<>			-			
11:42 AD				E	-29	2.0			2.0 m: becoming more pale grey and pale brown				-			
File>> 30/10/2018				E	-	- 3.0—							-			
4.GPJ < <drawing< td=""><td></td><td></td><td></td><td>F</td><td rowspan="2">-28</td><td>- - 4.0-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drawing<>				F	-28	- - 4.0-							-			
-NTLGE2205(_					SP	SANDSTONE: fine grained, orange, extremely weathered, very low to low strength.	M	-		HIGHLY WEATHERED					
CORED 754					-	- 5.0—			Borehole BH01 continued as cored hole				-			
EHOLE: NON (-26	-							-				
Log COF BOF					- 6.0	- 6.0— -							-			
ARY.GLB rev:AS					-25	- -							-			
DF_0_9_06_LIBR,					-24	7.0							-			
ដ					Ļ	-										
	metho AD AS HA W RR & e.g. B	hod support auger drilling* mud auger screwing* M hand auger generration washbore penetration rock roller/tricone water bit shown by suffix 10 AD/T Jank bit					no ret rangir refusa Oct-12 w el on date er inflow	I nil sistance ng to al ater e shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered W W VS vane shear; peak/remouded (kPa)	classifica soil d based Classific oisture dry moist wet p plastic l l liquid lin	tion sym escriptio on Unifie ation Sys	bol & n ed tem	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense			
	* e.g. B T V	bit show AD/T blank b TC bit V bit	vn by it	suffix		■ 10- leve wate	Oct-12 w el on date er inflow er outflov	ater e shown w	Nc SPT with solid cone W VS vane shear; peak/remouded (kPa) W R refusal HB hammer bouncing	p plastic l I liquid lii	imit nit					

A TETRA TECH	ICOMPANY	Borehole ID.	BH02
Enai	nooring Log Porcholo	sheet:	1 of 1
Engi	neering Log - Borenole	project no.	754-NTLGE220504
client:	Crescent Newcastle Pty Ltd	date started:	10 Sep 2018
principal:		date completed:	10 Sep 2018
project:	Proposed Multi Building Residential Development	logged by:	MJ
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB
	· · · · · · · · · · · · · · · · · · ·		

	positio	sition: E: 385,624.50; N: 6,355,677.60 (MGA94)							surface elevation: 30.94 m (AHD)	angle	angle from horizontal: 90°								
Ŀ	drill m	nodel: C	omac	chio 450P,	Track	k moun	ted		drilling fluid:	hole d	iameter	: 100	mm	1					
ſ	drilli	ng info	mati	on			mate	rial sul	ostance										
ſ	nethod & upport	penetration	vater	samples & field tests	KL (m)	lepth (m)	raphic log	lassification symbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	noisture condition	onsistency / elative density	han penet mete (kPa	d tro- er a)	structure and additional observations					
ł		0.0	5	E	Ľ.	ہ -		00	FILL: BITUMEN : Black, fine to coarse subangular gravel.		02	20	8 4	FILL- WEARING COURSE					
			_	E SPT 3, 3, 8 N*=11 E	-30	- - 1.0 - -		CL CL	FILL: Sandy GRAVEL: fine to coarse grained, brown, with some cobbles 63mm to 80mm. FILL: Sandy CLAY: low to medium plasticity, dark grey, grey and brown, fine to medium sand, some surounded sized gravel. FILL: CLAY: medium plasticity, grey and pale grey with orange.		 VSt			FILL					
42	AD/T		Not Observed		-29	2.0-	\approx	sc	CLAYEY SAND: fine to coarse grained, pale brown and pale grey.	M				RESIDUAL SOIL					
ingFile>> 30/10/2018 11:				SPT 6, 8, 9 N*=17	-28	- 3.0— -		CL CL	Sandy CLAY: medium plasticity, grey, fine to medium grained sand. CLAY: medium plasticity, orange mottled pale grey.		Η								
220504.GPJ < <uraw< th=""><th>•</th><th></th><th></th><th colspan="2">-27 4.0 SPT 15/10mm HB -</th><th></th><th>Borehole BH02 terminated at 4.01 m Safety reasons</th><th><wp< th=""><th></th><th></th><th></th><th>EXTREMELY WEATHERED MATERIAL</th></wp<></th></uraw<>	•			-27 4.0 SPT 15/10mm HB -			Borehole BH02 terminated at 4.01 m Safety reasons	<wp< th=""><th></th><th></th><th></th><th>EXTREMELY WEATHERED MATERIAL</th></wp<>				EXTREMELY WEATHERED MATERIAL							
HOLE: NON CORED 754-NTLGE				N*=R	-26	- - 5.0— -													
s rev:AS Log COF BORE							-25	- 6.0— - -											
CDF_0_9_06_LIBKARY.GL					-24	7.0													
	method s AD auger drilling* AD auger screwing* MA hand auger W washbore RR rock roller/tricone * bit shown by suffix e.g. AD/T B blank bit T T C bit V V bit			→23 supj M r C c pend wate	port mud casing etration er er leve wate wate	N - no res rangin ◄ refusa Dct-12 wa el on date er inflow er outflow	nil istance g to l ater shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vare shear; peak/remouded (kPa) R refusal HB hammer bouncing	classificati soil de based o Classifica moisture D dry M moist W wet Wp plastic lin WI liquid lim	ion syml scription on Unifie tion Sys nit	bol & n d tem		consistency / relative density VS very soft S soft F firm St stilf VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense						

A TETRA TECH	H COMPANY				Borehole ID.	BH02A			
Ena	Incorin	~ ~		rahala	sheet:	1 of 13			
Eng	ineerin	g Lo	ј - Бо	project no.	754-NTLGE220504				
client:	Crescent I	Vewcast	le Pty Ltd	date started:	20 Sep 2018				
principal:				date completed: 21 Sep 2018					
project:	Proposed	Multi Bu	uilding Re	sidential Development	logged by:	MJ			
location:	11 - 13 Mo	sbri Cre	scent, Co	oks Hill, NSW	checked by:	RB			
position: E	: 385,619.90; N: 6,	355,693.60	(MGA94)	surface elevation: 32.40 m (AHD)	angle from horizontal: 90°				
drill model:	Comacchio 450P,	Track mour	ited	hole diameter : 96 mm					
drilling inf	formation		material sub						
ç			ç	, ≩ hand	structure and				

	ø	ation		samples &		n)	log	ation		material des	scription		еu	ncy / lensity	ha pen	and etro-	strue additiona	cture and I observations
	ethod	peneti	ater	field tests	L (m)	epth (r	aphic	assific /mbol	SOIL COIO	rYPE: plasticity or ur, secondary and	particle characteristic, minor components		oistur	insister lative c	me (k	eter Pa)		
ŀ	E x	- 0 0	>	E	R	ğ	<u>ت</u> ۳	s) Cl	∖FILL: BITU	MEN PAVEMEN	IT: black, 50mm.		Е Ŭ — — — —	8 e	100	<u>8</u> 8	FILL-WEARING	G COURSE 🚽
ŀ	$\overline{1}$			E		-	XXX		FILL: Grav	elly SAND: fine	to coarse grained,	r	IVI				FILL- PAVEME	NT +
					-32	-	· · · · ·		brown and p gravel. SANDSTOM	bale grey, with a	ingular to sub-angul	lar					HIGHLY WEAT BECOMING MC WEATHERED M	HERED DERATELY MATERIAL
					-	1.0-	· · · · · · · · · ·											-
					-31	-	· · · · · · · · · · · · · · ·									ii		-
					_	-	· · · · · · · · · · · · · · ·											-
		İ				2.0	· · · · ·									ii		
8 11:42					-30	-	· · · · ·											-
30/10/201					_	- 3.0-	· · · · ·									ii		-
ingFile>>					-29	-	· · · · ·											-
J < <draw< td=""><td></td><td></td><td>served</td><td></td><td></td><td>-</td><td>· · · · ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></draw<>			served			-	· · · · ·											
20504.GP	- RR N		Not Ot		-	4.0	· · · · · · · · · · · · · · · · · · ·											-
4-NTLGE2					-28	-	· · · · ·											-
ORED 75					-	- 5.0-	· · · · ·											-
E: NON C					-27	-	· · · · ·											-
SOREHOL						-	· · · · ·											
-og COFE					-	6.0	· · · · ·											-
B rev:AS 1					-26	-	· · · · · · · · · · · · · · · · · · ·											-
RARY.GL					_	7.0-												
9_06_LIB					-25	-	· · · · ·											-
CDF_0						-	· · · · · · · · · · · · · · · · · · ·											
┢	<u> </u>	<u> </u>			-					- 0 (1-1-1		cl	assificat	ion svm	bol &			-
	meth AD AS	auger dr auger so	illing' rewir	* ng*	supp Mr Cc	nud asing	Ν	nil	B D	s & field tests bulk disturbed sa disturbed sample	ample e	5	soil de	scriptio	n d		VS S	relative density very soft soft
	HA W	hand au washboi	ger e		pene	etration			E SS	environmental sa	ample ble		Classifica	ition Sys	tem		F St	firm stiff
	RR	rock roll	er/tric	one		3 2	 no res rangin 	istance g to	U## HP	undisturbed sam	ple ##mm diameter ter (kPa)	mois D	sture drv				VSt H	very stiff hard
		h. 1 1			wate	er er	 refusa 	ſ	N N*	standard penetra	ation test (SPT) covered	M W	moist wet				Fb VL	friable verv loose
	* e.g.	bit shown by suffix AD/T			10-Oct-12 water level on date shown			Nc VS	SPT with solid co	one k/remouded (kPa)	Wp WI	plastic li liquid lim	mit nit			L	loose medium dense	
	B T	blank bit TC bit				wate	er inflow er outflow	,	R HB	refusal hammer bouncin	ng						D VD	dense very dense

A TETRA TECH	COMPANY	Borehole ID.	BH02A
Engi	naaring Lag Barahala	sheet:	2 of 13
Engi	neering Log - Borenole	project no.	754-NTLGE220504
client:	Crescent Newcastle Pty Ltd	date started:	20 Sep 2018
principal:		date completed:	21 Sep 2018
project:	Proposed Multi Building Residential Development	logged by:	MJ
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB

position: E: 385,619.90; N: 6,355,693.60 (MGA94) surface elevation: 32.40 m (AHD) angle from horizontal: 90° drill model: Comacchio 450P, Track mounted drilling fluid: non / water hole diameter : 96 mm drilling information material substance classification symbol consistency / relative density material description hand structure and penetration samples & field tests graphic log penetro meter additional obse vations method & support depth (m) SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components moisture condition ŝ water (kPa) RL 40 3 2 0 10 MODERATELY WEATHERED TO SLIGHTLY WEATHERED SANDSTONE. (continued) |||||||||||||-24 ||||||||||| | | || | | |9.0 ||||||||||-23 ||||||| | | |||||||10.0 ||||||-22 ||||||| | | || | | || | | |11.0 | | | || | | |-21 |||||| | | |Not Observed ||||||12.0 R ||||||||||||-20 |||||||||||| | | || | | |13.0 | | | || | | |||||||19 | | | |14.0 |||||-18 ||||||| | | || | | ||||||15.0 | | | || | | |-17 |||||||||||||||||method AD auger drilling* classification symbol & samples & field tests B bulk disturbed sample support consistency / relative density soil description N nil VS Μ mud verv soft based on Unified AS auger screwing' C casing D E disturbed sample S F soft HA W hand auger Classification System environmental sample firm penetration washbore SS split spoon sample St stiff RR rock roller/tricone undisturbed sample ##mm diameter hand penetrometer (kPa) standard penetration test (SPT) moisture D dry M mois W wet very stiff VSt no resistance ranging to refusal U## HP N H Fb hard dry moist wet plastic limit friable very loose N* SPT - sample recovered VL bit shown by suffix 10-Oct-12 water level on date shown Wp WI ▼ SPT with solid cone Nc loose L e.g. B T AD/T İiguid limit VS vane shear; peak/remouded (kPa) MD medium dense blank bit vater inflow

R

HB

water outflow

refusal

hammer bouncing

D VD

dense

very dense

754-NTLGE220504.GPJ COF BOREHOLE: NON CORED Log rev:AS I IBRARY.GLB g

Ę

TC bit

V bit

A TETRA TECH	COMPANY	Borehole ID.	BH02A
Enai	nooring Log Porcholo	sheet:	3 of 13
Engi		project no.	754-NTLGE220504
client:	Crescent Newcastle Pty Ltd	date started:	20 Sep 2018
principal:		date completed:	21 Sep 2018
project:	Proposed Multi Building Residential Development	logged by:	MJ
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB

position: E: 385,619.90; N: 6,355,693.60 (MGA94) surface elevation: 32.40 m (AHD) angle from horizontal: 90° drill model: Comacchio 450P, Track mounted drilling fluid: non / water hole diameter : 96 mm drilling information material substance classification symbol consistency / relative density material description hand structure and penetration samples & field tests graphic log penetro meter additional obser vations method & support depth (m) SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components moisture condition ŝ water (kPa) RL 40 3 2 0 10 MODERATELY WEATHERED TO SLIGHTLY WEATHERED SANDSTONE. (continued) Т |||||||||||||16 ||||||||||| | | ||||||17.0 ||||||||||-15 ||||||| | | |18.0 ||||||-14 ||||||| | | || | | || | | |19.0 | | | || | | |13 |||||| | | |Not Observed ||||||R 20.0 ||||||||||||12 |||||||||||| | | || | | |21.0 | | | || | | |||||||-11 | | | |||||||22.0 1 | | | |||||-10 ||||||| | | || | | || | | |23.0 | | | | || | | ||||||-9 | | | ||||||||||||method AD auger drilling* classification symbol & samples & field tests B bulk disturbed sample consistency / relative density support soil description N nil VS Μ mud verv soft based on Unified AS auger screwing' C casing D E disturbed sample S F soft HA W hand auger Classification System environmental sample firm penetration washbore SS split spoon sample St stiff RR rock roller/tricone undisturbed sample ##mm diameter hand penetrometer (kPa) standard penetration test (SPT) moisture D dry M mois W wet very stiff VSt no resistance ranging to refusal U## HP N H Fb hard dry moist wet plastic limit friable N* SPT - sample recovered VL very loose bit shown by suffix 10-Oct-12 water level on date shown Wp WI ▼ SPT with solid cone Nc loose L e.g. B T AD/T İiguid limit VS vane shear; peak/remouded (kPa) MD medium dense blank bit vater inflow D VD R refusal dense

754-NTLGE220504.GPJ rev:AS Log COF BOREHOLE: NON CORED **JBRARY.GLB** g

Ę

TC bit

V bit

water outflow

HB

hammer bouncing

very dense

V bit

A TETRA TECH	COMPANY	Borehole ID.	BH02A		
Enai	naaring Lag Barahala	sheet:	4 of 13		
Engi	neering Log - Borenole	project no.	754-NTLGE220504		
client:	Crescent Newcastle Pty Ltd	date started:	20 Sep 2018		
principal:		date completed:	21 Sep 2018		
project:	Proposed Multi Building Residential Development	logged by:	MJ		
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB		
position: E:	385,619.90; N: 6,355,693.60 (MGA94) surface elevation: 32.40 m (AHD)	angle from horizontal: 90°			

drill model: Comacchio 450P, Track mounted drilling fluid: non / water hole diameter : 96 mm drilling information material substance classification symbol consistency / relative density material description hand structure and penetration samples & field tests graphic log penetro meter additional obse vations method & support depth (m) SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components moisture condition ŝ water (kPa) RL 40 3 2 0 10 MODERATELY WEATHERED TO SLIGHTLY WEATHERED SANDSTONE. (continued) Т ||||||-8 ||||||| | | |||||||| | | |25.0 ||||||| | | |-7 ||||||||||||||||||26.0 COAL. ||||||-6 ||||||| | | || | | || | | |27.0 ||||||| | | |-5 |||||||||||Not Observed SILTSTONE. ||||||754-NTLGE220504.GP、 R 28.0 ||||||||||||4 ||||||| | | |COAL. | | | |COF BOREHOLE: NON CORED | | | |29.0 | | | || | | |SILTSTONE. FRESH | | | |-3 | | | |||||||COAL. 30.0 Log ||||||rev:AS I SANDSTONE. -2 ||||||| | | |IBRARY.GLB | | | ||||||31.0 |||||| | | |.1 ||||||Ę |||||||||||method AD auger drilling* classification symbol & samples & field tests B bulk disturbed sample support consistency / relative density soil description N nil VS Μ mud verv soft based on Unified AS auger screwing' C casing D E disturbed sample S F soft HA W hand auger Classification System environmental sample firm penetration . St VSt washbore SS split spoon sample stiff RR rock roller/tricone undisturbed sample ##mm diameter hand penetrometer (kPa) standard penetration test (SPT) no resistance ranging to refusal moisture D dry M mois W wet very stiff U## HP N H Fb hard dry moist wet plastic limit friable SPT - sample recovered SPT with solid cone N* VL very loose bit shown by suffix 10-Oct-12 water level on date showr Wp WI ▼ Nc loose L e.g. B T AD/T İiguid limit VS vane shear; peak/remouded (kPa) MD medium dense blank bit vater inflow D VD R refusal dense TC bit vater outflow HB hammer bouncing very dense

TETRA TECH	COMPANY	Borehole ID.	BH02A
Enai	nooring Log Boroholo	sheet:	5 of 13
Engi	neering Log - Borenole	project no.	754-NTLGE220504
client:	Crescent Newcastle Pty Ltd	date started:	20 Sep 2018
principal:		date completed:	21 Sep 2018
project:	Proposed Multi Building Residential Development	logged by:	MJ
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB

position: E: 385,619.90; N: 6,355,693.60 (MGA94)						93 60 (MGAQ	4)	surface elevation: 32 40 m (AHD)	andle	from be	orizo	ntal.	90°					
	drill m	nodel: Co	omac	chio 450P.	Track	k moun	ted	. ,	drilling fluid: non / water	hole diameter : 96 mm									
F	drilli	ing infor	mati	ion			mate	rial sub	ostance										
	method & support	penetration	water	samples & field tests	RL (m)	depth (m)	graphic log	classification symbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	ha pen me (k	and ietro- eter Pa)	structure and additional observations					
					-0	-			SANDSTONE. (continued)		0 2		 	FRESH					
118 11:42			Not Observed		2	- 34.0— - -													
<drawingfile>> 30/10/20</drawingfile>				рал	3	- 35.0— - -													
54-NTLGE220504.GPJ <	RR				4	- 36.0 — - -													
REHOLE: NON CORED 7										5	- 37.0— - -								
BLB rev:AS Log COF BOF								- 6	- 38.0 - - -										
CDF_0_9_06_LIBRARY.(7	- 39.0 - - - -												
	meth AD AS HA W RR * e.g. B T	auger dr auger sc hand au washbor rock rolle bit show AD/T blank bit TC bit	rilling ger re er/tric	* ng* xone suffix	sup M I C O pen wate	port mud casing etration er er ₩ leve wat	N no ress rangin refusa Oct-12 wa el on date er inflow er outflow	nil istance g to l ater shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal	classificati soil de based d Classifica Moisture D dry M moist W wet Wp plastic lin WI liquid lim	ion sym scriptio on Unifie tion Sys mit mit	bol & n ed stem		consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense					

position: E: 385,619.90; N: 6,355,693.60 (MGA94)

drill model: Comacchio 450P, Track mounted

TC bit

V bit

TETRA TECH	COMPANY	Borehole ID.	BH02A
Enai	nooring Log Boroholo	sheet:	6 of 13
Engi	neering Log - Borenole	project no.	754-NTLGE220504
client:	Crescent Newcastle Pty Ltd	date started:	20 Sep 2018
principal:		date completed:	21 Sep 2018
project:	Proposed Multi Building Residential Development	logged by:	MJ
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB

angle from horizontal: 90°

structure and

verv soft

very stiff

very loose

very dense

medium dense

soft

firm

stiff

hard friable

loose

dense

D VD

vations

additional obser

hole diameter : 96 mm

surface elevation: 32.40 m (AHD)

drilling fluid: non / water

drilling information material substance classification symbol consistency / relative density material description hand penetration samples & field tests graphic log penetro meter method & support depth (m) SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components moisture condition ŝ water (kPa) R 40 3 2 10 40 3 2 10 SANDSTONE. (continued) FRESH ||||||-8 |||||||||||| | | || | | |41.0 ||||||||||-9 ||||||| | | |||||||42.0 ||||||-10 ||||||| | | || | | || | | |43.0 | | | || | | |-11 |||||| | | |Not Observed ||||||COAL: black. 754-NTLGE220504.GPJ R 44.0 ||||||||||||-12 ||||||| | | || | | |LIBRARY.GLB rev:AS Log COF BOREHOLE: NON CORED | | | |SANDSTONE: grey. 45.0 | | | || | | |||||||-13 | | | |46.0 1 | | | |||||-14 ||||||| | | || | | || | | |47.0 | | | || | | |g -15 ||||||Ę |||||||||||method AD auger drilling* classification symbol & samples & field tests B bulk disturbed sample consistency / relative density support soil description N nil VS Μ mud auger screwing* based on Unified AS C casing D E disturbed sample S F HA W hand auger Classification System environmental sample penetration . St VSt washbore SS split spoon sample undisturbed sample ##mm diameter hand penetrometer (kPa) standard penetration test (SPT) RR rock roller/tricone moisture D dry M mois W wet no resistance ranging to refusal U## D dry M moist W wet Wp plastic limit WI liquid limit HP N H Fb SPT - sample recovered SPT with solid cone N* VL bit shown by suffix 10-Oct-12 water level on date shown ▼ Nc L e.g. B T AD/T VS vane shear; peak/remouded (kPa) MD blank bit vater inflow

R HB

vater outflow

refusal

hammer bouncing

TETRA TECH	COMPANY	Borehole ID.	BH02A
Enai	nooring Log Boroholo	sheet:	7 of 13
Engi	neering Log - Borenole	project no.	754-NTLGE220504
client:	Crescent Newcastle Pty Ltd	date started:	20 Sep 2018
orincipal:		date completed:	21 Sep 2018
project:	Proposed Multi Building Residential Development	logged by:	MJ
ocation:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB

position: E: 385,619.90; N: 6,355,693.60 (MGA94) surface elevation: 32.40 m (AHD) angle from horizontal: 90° drill model: Comacchio 450P, Track mounted drilling fluid: non / water hole diameter : 96 mm drilling information material substance classification symbol consistency / relative density material description hand structure and penetration samples & field tests graphic log penetro meter additional obser vations method & support depth (m) SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components moisture condition ŝ water (kPa) R 40 3 2 10 40 3 2 10 SANDSTONE: grey. (continued) FRESH ||||||-16 |||||||||||| | | ||||||49.0 ||||||||||-17 ||||||| | | |||||||50.0 ||||||-18 ||||||| | | || | | || | | |51.0 | | | || | | |-19 |||||| | | |Not Observed ||||||52.0 R |||||||||||-20 |||||||||||| | | || | | |53.0 | | | || | | |||||||-21 | | | |||||||54.0 |||||-22 ||||||| | | || | | || | | |55.0 | | | | || | | ||||||-23 | | | |COAL: black. |||||||||||method AD auger drilling* classification symbol & samples & field tests B bulk disturbed sample consistency / relative density support soil description N nil VS M mud verv soft based on Unified AS auger screwing' C casing D E disturbed sample S F soft HA W hand auger Classification System environmental sample firm penetration . St VSt washbore SS split spoon sample stiff RR rock roller/tricone undisturbed sample ##mm diameter hand penetrometer (kPa) standard penetration test (SPT) very stiff moisture D dry M mois W wet no resistance ranging to refusal U## HP N H Fb hard dry moist wet plastic limit friable N* SPT - sample recovered VL very loose bit shown by suffix 10-Oct-12 water level on date shown Wp WI ▼ SPT with solid cone Nc loose L e.g. B T AD/T İiguid limit VS vane shear; peak/remouded (kPa) MD medium dense blank bit vater inflow R HB D VD

refusal

hammer bouncing

vater outflow

dense

very dense

754-NTLGE220504.GPJ rev:AS Log COF BOREHOLE: NON CORED IBRARY.GLB g

Ę

TC bit

V bit

Engineering	Log - Borehole	
-------------	----------------	--

client: Crescent Newcastle Pty Ltd

principal:

project: Proposed Multi Building Residential Development

location: 11 - 13 Mosbri Crescent, Cooks Hill, NSW

checked by:

Borehole ID.

sheet:

project no.

logged by:

date started:

date completed:

BH02A 8 of 13

20 Sep 2018

21 Sep 2018

MJ

RB

754-NTLGE220504

	positi	on: E: 38	85,6	19.90; N: 6,	355,6	93.60 (MGA94	+)	surface elevation: 32.40 m (AHD)	ang	le from h	orizontal: 9	90°										
	drill m	nodel: Co	mac	chio 450P,	Track	(moun	ted		drilling fluid: non / water	hole	hole diameter : 96 mm												
	drilli	illing information						rial sub															
	_	tion	samples &			b	tion	material description		y / nsity	hand	structure and											
	ort 8	netra	3L	field tests	Ê	ш́ ц	hic lo	sifica bol	SOIL TYPE: plasticity or particle characteristic,	sture	istenc ve de	meter											
	supp	3 5 De	wate		RL (dept	grap	clas sym	colour, secondary and minor components	mois	cons	(KPa) 6 3 3 2 0 4 (KPa)											
ſ													FRESH										
					24		· · · · · · · · ·					iiii	-										
							· · · · ·						-										
					_	-	· · · · · · · · · ·					liiii	-										
						57.0 —							-										
					25								-										
					25		· · · · ·						-										
							· · · · ·						-										
						-	58.0-	· · · · ·						-									
												· · · · ·						-					
11:42					26								-										
/2018]							-										
30/10					-	59.0-	· · · · ·						_										
-ile>>						-	· · · · · · · · · ·						-										
awingF					27								-										
< <dra< td=""><td></td><td></td><td>served</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></dra<>			served										-										
4.GPJ	R 2		ot Obs		-	60.0-							-										
22050	Ī		ž				· · · · · · · · ·						-										
TLGE					28								-										
754-N																							
RED															-	61 0						iiii	-
ON CC																							61.0
ĽE: N		i			29	-	· · · · · · · · · ·					liii!	-										
REHO													-										
DF BO					_	62.0	· · · · ·						-										
og CO						02.0	· · · · ·					1111	-										
r:AS L					30								2										
LB rev						-						liiil											
ARY.G					_	-	· · · · · · · · ·						-										
LIBR						63.0-							-										
90 6					31		· · · · · · · · · ·					iiii	-										
DF_0.													-										
1					_		· · · · ·						-										
Ī	meth	od	illin c'		sup	port			samples & field tests	classific	ation sym	ibol &	consistency / relative density										
	AS	auger or	crewin	ng*	M r C c	nud xasing	N	nil	B bulk disturbed sample D disturbed sample	base	d on Unifie	ed	VS very soft S soft										
	W	washbor	yer re		pen	etration			E environmental sample SS split spoon sample	Classi	ication Sys	siem	F firm St stiff										
	ĸĸ	FOCK FOLL	er/tric	one		Ē	 no resi rangin 	stance g to	U## undisturbed sample ##mm diameter HP hand penetrometer (kPa)	moisture D dry			VSt very stiff H hard										
	*	hit show	n by	suffix	wate	<u></u> ∋r 	refusal	tor	N standard penetration test (SPT) N* SPT - sample recovered	M moist W wet			Fb friable VL very loose										
	e.g. B	AD/T	y			leve	or inflow	shown	Nc SPT with solid cone Wp plastic limit VS vane shear; peak/remouded (kPa) WI liquid limit			limit L loose limit MD medium dense											
	T V	TC bit V bit				wate	er outflow		R refusal HB hammer bouncing				D dense VD very dense										

TETRA TECH	COMPANY	Borehole ID.	BH02A
Enai	nooring Log Boroholo	sheet:	9 of 13
Engi	neering Log - Borenole	project no.	754-NTLGE220504
client:	Crescent Newcastle Pty Ltd	date started:	20 Sep 2018
principal:		date completed:	21 Sep 2018
project:	Proposed Multi Building Residential Development	logged by:	MJ
ocation:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB

ſ	positi	on: E:3	35,6	19.90; N: 6,	355,6	93.60 (MGA9	4)	surface e	levation: 32.40 m (AHD)	ar	ngle fr	om ho	rizor	ntal:	90°		
ļ	drill n	nodel: Co	mac	chio 450P,	Trac	k moun	ted		drilling flu	id: non / water		ho	ole dia	ameter	: 96	mm			
ļ	drill	ing infor	mati	on	1	1	mate	material substance											
	∞ ŏ	ration		samples &		Ê	Bo	ation		material description		٥	ç	ncy / density	hand penetro-		structure and additional observations		
	ethod	peneti	ater	field tests	Ē	pth (r	aphic	assific mbol	SOIL cold	TYPE: plasticity or par our, secondary and min	ticle characteristic, nor components	Distur	nditio	nsister ative c	me (kf	eter Pa)			
ł	E N	- N m	Ň		RL	de		cla syı	CANDOTO!			Ĕ	8	cor	20 <u>1</u> 0	40 30	FREQU		
						-			SANDSTO	NE. (continued)					ii	ij.	FRESH	-	
					32	-		· · · · ·											_
						-								İİ	11		-		
					-	65.0-												_	
						-												-	
					33	-												_	
						-												-	
		i i			-	-										11		_	
																		-	
42					34	-												-	
018 11						-										ij		-	
0/1 0/2(-	67.0-												_	
e>> 3																		-	
vingFil					35	-										ii.		-	
< <drav< td=""><td></td><td></td><td>erved</td><td></td><td></td><td>- </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drav<>			erved			-												-	
.GPJ	 2		t Obse		-	- 68 0												_	
20504	1		Ž			-										ij.		-	
TLGE2					36	-												_	
754-N						-												-	
RED					-	- 69.0-												_	
ON CC						-												-	
OLE: N					37	-												_	
DREHO						-												-	
OFBC					-	70.0-												_	
Log						-												-	
ev:AS					38	-										ii		_	
.GLB r						-												-	
RARY					-	71.0-												_	
D6_LIB						-										ii		-	
0_9_0					39	-												_	
CDF		i				-									İİ	ij.		-	
					-												1		
	meth AD	auger dr	illing	.	sup M	port mud	N	nil	sample B	s & field tests bulk disturbed samp	ble	classi	ncatio	n symt criptior	001& 1		consistency / relative densityVSvery soft		
	AS HA	auger so hand au	rewii ger	ng*	Co	casing			D E	disturbed sample environmental samp	ble	ba Clas	ised or sificatio	n Unifie on Syst	d tem		S soft F firm		
	W RR	washboi rock roll	e er/tric	one	pen resi	etration - ໙ ຓ ■	h no res	istance	SS U##	split spoon sample undisturbed sample	##mm diameter	moisture	•				St stiff VSt very stiff		
						<u></u>	rangin refusa	ig to	HP N	hand penetrometer standard penetration	(kPa) n test (SPT)	D dry M moi	st				H hard Fb friable		
	*	bit show	n by	suffix	wate	er 10-0 leve	Oct-12 wa	ater shown	N* Nc	SPT - sample recov SPT with solid cone	ered	W wet Wp plas	stic lim	it			VL very loose L loose		
	в. В Т	blank bit	AD/T level on date sho blank bit water inflow			VS R	vane shear; peak/re refusal	emouded (kPa)	WI liqu	ıd limit				MD medium dense D dense					
	V	V bit			-	- wat	er outflov	v	HB	hammer bouncing							VD very dense		

A TETRA TECH	COMPANY	Borehole ID.	BH02A		
Engi	nooring Log Borcholo	sheet:	10 of 13		
Engi	neering Log - Borenole	project no.	754-NTLGE220504		
client:	Crescent Newcastle Pty Ltd	date started:	20 Sep 2018		
principal:		date completed:	21 Sep 2018		
project:	Proposed Multi Building Residential Development	logged by:	MJ		
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB		

position: E: 385,619.90; N: 6,355,693.60							MGA9	4)	surface elevation: 32.40 m (AHD)	a	angle	from ho	orizon	tal: 9	90°	
c	Irill m	nodel: Co	omac	chio 450P,	Trac	k moun	ited		drilling fluid: non / water	ł	nole d	liamete	r:96	mm		
drilling information							mate	erial sub	ostance							
0	netnoa & upport	penetration	vater	samples & field tests	sL (m)	lepth (m)	Jraphic log	lassification symbol	material description SOIL TYPE: plasticity or particle charac colour, secondary and minor compor	teristic,	noisture condition	onsistency / elative density	hai pene me (kP	nd etro- ter Pa)	struc additional	cture and lobservations
			Not Observed W		<u>~</u> 40 - 41 - 42 - 43 - 43 - 45 - 45 - 46 - 47	73.0			SANDSTONE. (continued)		sificat	ion svm			FRESH	
	memora support AD auger drilling* AS auger drilling* HA hand auger W washbore RR rock roller/tricone * bit shown by suffix e.g. AD/T B blank bit T T C bit V V bit					port mud casing etration er er V leve wat wat wat	N no ree rangir refusa Oct-12 w el on date er inflow er outflow	nil istance ig to il ater shown	samples & rieid tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm dial HP hand penetrometer (kPa) N standard penetration test (SPT N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (k R refusal HB hammer bouncing	neter moistu D dr) M mi W we Wp pla Pa) WI lig	re y oist et astic li uid lim	mit	n ed tem		Consistency / I VS S F VSt H Fb VL L L MD D VD	rerative density very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense

CDF 0 9 06 LIBRARY.GLB rev:AS Log COF BOREHOLE: NON CORED 754.NTLGE220504.GPJ << Drawing File>> 30/10/2018 11:42

A TETRA TECH	COMPANY	Borehole ID.	BH02A
Engi	nooring Log Borcholo	sheet:	11 of 13
Engi	neering Log - Borenole	project no.	754-NTLGE220504
client:	Crescent Newcastle Pty Ltd	date started:	20 Sep 2018
principal:		date completed:	21 Sep 2018
project:	Proposed Multi Building Residential Development	logged by:	MJ
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB

	positi	on: E:3	85,6	19.90; N: 6,	355,6	93.60 (MGA9	4) surface elevation: 32.40 m (AHD) angle from h			orizontal: 90°		
	drill m	nodel: Co	omac	chio 450P,	Trac	k moun	ted		drilling fluid: non / water	hole of	liamete	r : 96 mm	
[drilli	ing infor	mati	on			mate	erial sub	bstance				
	nethod & upport	penetration	/ater	samples & field tests	kL (m)	lepth (m)	Iraphic log	lassification ymbol	material description SOIL TYPE: plasticity or particle characteristic colour, secondary and minor components	, noisture ondition	onsistency / elative density	hand penetro- meter (kPa)	structure and additional observations
			>		48	- - -	D	0 0	SANDSTONE. (continued)	<u> </u>	82	100 100 100 100 100 100 100 100	FRESH
					49	- 81.0— - - -							
/10/2018 11:42					50	82.0— - - -							
.GPJ < <drawingfile>> 30</drawingfile>			t Observed		51	83.0— - - - 84.0—							
RED 754-NTLGE220504.			Noi		52								
= BOREHOLE: NON COF					53	85.0— - - -							
ARY.GLB rev:AS Log COI					54	86.0— - - - -							
CDF_0_9_06_LIBR					55	- - -							
	meth AD AS HA W RR * e.g. B T V	od auger d auger s hand au washbo rock roll bit show AD/T blank bi TC bit V bit	rilling crewin ger re er/tric m by t	* xone suffix	sup M C pen wate	port mud casing etration er er er leve wat	N no ree rangir refusa Oct-12 w el on date er inflow er outflov	I nil sistance ig to al ater e shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	classificat soil de based Classifica moisture D dry M moist W wet Wp plastic li WI liquid lin	ion sym escriptio on Unifie ation Sys mit mit	bol & n kd tem	consistency / relative densityVSvery softSsoftFfirmStstiffVStvery stiffHhardFbfriableVLvery looseLlooseMDmedium denseDdenseVDvery dense

A TETRA TECH	I COMPANY	Borehole ID.	BH02A		
Enai	naaring Lag Barahala	sheet:	12 of 13		
Eng	ineering Log - Borenole	project no.	754-NTLGE220504		
client:	Crescent Newcastle Pty Ltd	date started:	20 Sep 2018		
principal:		date completed:	21 Sep 2018		
project:	Proposed Multi Building Residential Development	logged by:	MJ		
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB		

ſ	positi	ion: E:3	85,6	19.90; N: 6	,355,6	93.60 (MGA9	4)	surface elevation: 32.40 m (AHD)	angle	from ho	orizontal: 9	0°
	drill n	nodel: C	oma	cchio 450P,	Trac	k moun	ted		drilling fluid: non / water	hole c	diameter	r : 96 mm	
ļ	drill	ing info	mat	ion			mate	erial sub	bstance				
	nethod & upport	penetration	vater	samples & field tests	sL (m)	lepth (m)	Jraphic log	lassification	material description SOIL TYPE: plasticity or particle characteristic colour, secondary and minor components	, noisture condition	onsistency / elative density	hand penetro- meter (kPa)	structure and additional observations
ŀ	<u> </u>	3 2 -	>		56	-	5	0 0	SANDSTONE. (continued)	E 0	02		FRESH
					57	- 89.0 - - -							
0/2018 11:42				-	58	90.0							
.GPJ < <drawingfile>> 30/</drawingfile>			t Observed		59	91.0							
DRED 754-NTLGE220504.			No		60	92.0 - - 93.0-						
DF BOREHOLE: NON CC					61	- - - - 94 0							
06_LIBRARY.GLB rev:AS Log CI					62	95.0			COAL: black.				
CDF_0_9_		·			63 -	-				Classificat	ion sym	 	-
	meth AD AS HA W RR * e.g. B T V	auger d auger s hand au washbo rock roll bit show AD/T blank bi TC bit V bit	rilling crewi iger re er/trio n by t	* ng* cone suffix	sup M C pen wat	port mud casing etration er er v total tot	 no rearrange range refusa Oct-12 w on date er inflow er outflow 	I nil sistance ng to al ater e shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	Classifica soil de based Classifica D dry M moist W wet Wp plastic li WI liquid lin	escriptio on Unifie ation Sys	n d tem	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

A TETRA TECH	COMPANY	Borehole ID.	BH02A		
Enai	nooring Log Boroholo	sheet:	13 of 13		
Engi	neering Log - Borenole	project no.	754-NTLGE220504		
client:	Crescent Newcastle Pty Ltd	date started:	20 Sep 2018		
principal:		date completed:	21 Sep 2018		
project:	Proposed Multi Building Residential Development	logged by:	MJ		
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB		

	positi	ion: E:3	35,6	19.90; N: 6,	355,6	93.60 (MGA9	4)	surface elevation: 32.40 m (AHD)		angle	from ho	orizo	ntal	l: 9	.0°			
	drill n	nodel: Co	mac	chio 450P,	Trac	k moun	ted		drilling fluid: non / water		hole c	liamete	r:96	6 mr	m				
	drill	ing infor	mati	on			mate	erial sub	stance										
	nethod & upport	penetration	vater	samples & field tests	kL (m)	lepth (m)	Jraphic log	lassification	material description SOIL TYPE: plasticity or particle characteristic colour, secondary and minor components	2,	noisture condition	onsistency / elative density	h per m (H	and netro ieter (Pa)	2-	structure and additional observations			
BOREHOLE: NON COREU 754-NI LGEZZ0504.GFJ <zdtawingfiib>> 30/10/Z018 11:4Z</zdtawingfiib>			Not Observed		64 65 66 67 68 69	97.0			COAL: black. (continued) SANDSTONE: grey.							FRESH -			
CDF_0_9_00_LIBKARY.GLB FEV:AS LUG UU	metr AD AS HA W RR	A state of the sta	illing crewin ger e	r ng*	70 71 Sup M C C pen	103.0 — 1	N	l nil	Borehole BH02A terminated at 102.0 m Target depth samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample	c	lassificat soil de based Classifica	ion sym scriptio on Unifie ation Sys	bol & n	 		consistency / relative density VS very soft S soft F firm St stiff			
	 w washoule RR rock roller/tricone * bit shown by suffix e.g. AD/T B blank bit T C bit V bit 		SS spirt spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered W W Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing		moisture D dry M moist W wet Wp plastic limit WI liquid limit			vsi very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense											

TETRA TECH	COMPANY	Borehole ID.	BH03	
En ai	nooring Log Do	sheet:	1 of 14	
Engi	neering Log - во	project no.	754-NTLGE220504	
client:	Crescent Newcastle Pty Ltd	date started:	17 Sep 2018	
orincipal:			date completed:	20 Sep 2018
oroject:	Proposed Multi Building Res	idential Development	logged by:	MJ
ocation:	11 - 13 Mosbri Crescent, Coo	checked by:	RB	
position: E:	385,685.80; N: 6,355,574.40 (MGA94)	angle from horizontal: 90°		
drill model: (Comacchio 450P, Track mounted	hole diameter : 96 mm		

L	drilli	ing infor	mati	on			mate	erial sub	stance				
	nethod & upport	penetration	vater	samples & field tests	sL (m)	lepth (m)	traphic log	lassification	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	noisture ondition	onsistency / elative density	hand penetro- meter (kPa)	structure and additional observations
	AD			E 	-32			GP CI	FILL: BITUMEN: black, 50mm. FILL: Sandy GRAVEL: fine to coarse grained, grey, angular to sub-angular, fine grained sand. Sandy CLAY: medium plasticity, mottled red and brown. CLAY: medium plasticity, pale grey and red mottled orange. Sandy CLAY: low plasticity, orange mottled pale	>Wp	St - VSt		FILL- WEARING COURSE FILL- PAVEMENT RESIDUAL SOIL
ngFile>> 30/10/2018 11:42	V			SPT 21, 30/90mm N=R	-30	2.0— - - 3.0—			brown, fine grained sand.				ROCK
Log COF BOREHOLE: NON CORED 754-NTLGE220504.GPJ < <drawi< th=""><td>2</td><td></td><td></td><td></td><td>-29 - -28 - -27</td><td></td><td></td><td></td><td>Borehole BH03 continued as cored hole</td><td></td><td></td><td></td><td></td></drawi<>	2				-29 - -28 - -27				Borehole BH03 continued as cored hole				
CDF_0_9_06_LIBRARY.GLB rev:AS					-26 -	- - 7.0 - - -							
	meth AD AS HA W RR * e.g. B T V	hod auger drilling* auger screwing* hand auger washbore rock roller/tricone bit shown by suffix AD/T blank bit TC bit V bit		support M mud C casing penetration water water		N no res rangin refusa Oct-12 wa el on date er inflow er outflow	nil istance ig to ater e shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered VC SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	classifica soil d basec Classific moisture D dry M moist W wet Wp plastic WI liquid li	tion symb escription on Unified ation Syste imit	ol &	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense	

A TETRA TECH	I COMPANY	Borehole ID.	BH04	
Enai	nooring Log De	sheet:	1 of 13	
Engi	neering Log - Бо	project no.	754-NTLGE220504	
client:	Crescent Newcastle Pty Lto	date started:	12 Sep 2018	
principal:			date completed:	14 Sep 2018
project:	Proposed Multi Building Re	esidential Development	logged by:	MJ
location:	11 - 13 Mosbri Crescent, Co	checked by:	RB	
position: E:	: 385,684.5; N: 6,355,567.6 (MGA94)	angle from horizontal: 90°		
drill model:	Comacchio 450P, Track mounted	hole diameter : 96 mm		

			, 100 4001	maor	mour			anning huid. Horr, water	TIOLC	alameter	. 50 11111	
dr	illing info	matic	on			mate	rial sub	ostance				Ι
method &	support 1 2 penetration 3	water	samples & field tests	RL (m)	depth (m)	graphic log	classification symbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	hand penetro- meter (kPa) § 8 8 8	structure and additional observations
			E SPT 5,5,5 N=10 E SPT 3,4,5 N=9 B B SET 7, 225/30mm N=R				GW CL CL CL-CI CL-CI CL-CI	FILL: BITUMEN PAVEMENT: black, 20mm. FILL: Sandy GRAVEL: fine to coarse grained, sub-angular to angular, grey, with fine grained sand. FILL: CLAYEY SAND: fine to coarse grained, brown and red. FILL: Sandy CLAY: low plasticity, brown, dark brown, pale grey, fine to coarse grained sand, with fine grained grained angular to sub-angular gravel. FILL: Sandy CLAY: low plasticity, dark brown, mottled orange, fine grained sand, with fine grained sub-angular to sub-angular to sub-angular to sub-angular to sub-rounded gravel and glass pieces. Sandy CLAY: low to medium plasticity, dark brown and dark grey, fine to coarse grained sand. CLAY: low to medium plasticity, mottled orange and brown, with fine rounded to sub-rounded gravel. Sandy CLAY: low to medium plasticity, dark grey, with medium to course grained sand, with fine angular to sub-angular gravel. Sandy CLAY: low to medium plasticity, dark grey, with medium to course grained sand, with fine angular to sub-angular gravel. Gravelly CLAY: low to medium grained, low to medium plasticity, pale grey and grey, with rounded to sub-rounded gravel, trace of fine to coarse grained sand. SANDSTONE: fine grained, pale grey and orange. SANDSTONE	/	St - H		FILL- WEARING COURSE FILL - PAVEMENT FILL - UNCONTROLLED RESIDUAL SOIL
ma AE AS HA W RF * e.ç B T V	ethod auger d auger s hand au washbc c rock rol bit shov g. AD/T blank b TC bit	rilling* crewing uger re ler/tricc vn by s	g* one uffix	supp M r C c pend wate	port nud asing etration etration er Pr 10- leve wat wat	N no res rangin refusa Oct-12 we el on date ar inflow eer outflow	nil istance g to ater shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	classificat soil de based Classific oisture dry moist wet p plastic I l liquid lir	iion syml escriptio on Unifie ation Sys	bol & n d tem	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

A TETRA TECH	I COMPANY		Borehole ID.	BH04		
	nooring log De	sheet:	2 of 13			
Engi	neering Log - Во	project no.	754-NTLGE220504			
client:	Crescent Newcastle Pty Ltd	d	date started:	12 Sep 2018		
principal:			date completed:	14 Sep 2018		
project:	Proposed Multi Building Re	esidential Development	logged by:	MJ		
location:	11 - 13 Mosbri Crescent, Co	ooks Hill, NSW	checked by:	RB		
position: E:	385,684.5; N: 6,355,567.6 (MGA94)	surface elevation: 32.8 m (AHD)	angle from horizontal: 90°			

drill model: Comacchio 450P, Track mounted drilling fluid: non / water hole diameter : 96 mm drilling information material substance classification symbol consistency / relative density material description hand structure and penetration samples & field tests graphic log penetro meter additional obse vations method & support depth (m) SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components moisture condition ŝ water (kPa) RL 40 3 2 0 10 MODERATELY WEATHERED TO SLIGHTLY WEATHERED SANDSTONE. (continued) |||||||||||||||||||||||||||||||-24 | | | ||||||||||9.0 ||||||||||||||||||||| | | |-23 10.0 111 ||||||30/10/2018 11:42 ||||||||||| | | |||||-22 | | | |||||| | | |11.0 ||||| | | || | | |||||| | | || | | |-21 754-NTLGE220504.GPJ R 12.0 ż ||||||||||||||||||||||||||||||||||| | | |-20 LIBRARY.GLB rev.AS Log COF BOREHOLE: NON CORED ||||| | | |13.0 ||||| | | || | | |||||111 ||||||| | | |||||||-19 14.0 ||||||||||||||||||||||||||||||||| | | |-18 ||||| | | |15.0 ||||| | | | |||||| | | |90 |||||| | | |Ę |||||17 ||||||method AD auger drilling* classification symbol & samples & field tests B bulk disturbed sample consistency / relative density support soil description N nil VS Μ mud verv soft based on Unified AS auger screwing' C casing D E disturbed sample S F soft HA W hand auger Classification System environmental sample firm penetration washbore SS split spoon sample St stiff RR rock roller/tricone undisturbed sample ##mm diameter hand penetrometer (kPa) standard penetration test (SPT) moisture D dry M mois W wet very stiff VSt no resistance ranging to refusal U## HP N H Fb hard dry moist wet plastic limit friable very loose N* SPT - sample recovered VL bit shown by suffix 10-Oct-12 water level on date shown Wp WI V SPT with solid cone Nc loose L e.g. B T AD/T İiguid limit VS vane shear; peak/remouded (kPa) MD medium dense blank bit vater inflow D VD R refusal dense TC bit

water outflow

V bit

HB

hammer bouncing

very dense

Ę

TC bit

V bit

A TETRA TECH	ICOMPANY		Borehole ID.	BH04
Enai	nooring log De	sheet:	3 of 13	
Engi	neering Log - Bo	project no.	754-NTLGE220504	
client:	Crescent Newcastle Pty Lte	d	date started:	12 Sep 2018
principal:			date completed:	14 Sep 2018
project:	Proposed Multi Building Re	esidential Development	logged by:	MJ
location:	11 - 13 Mosbri Crescent, Co	ooks Hill, NSW	checked by:	RB
position: E:	385,684.5; N: 6,355,567.6 (MGA94)	surface elevation: 32.8 m (AHD)	angle from horizontal: 90°	

drill model: Comacchio 450P, Track mounted drilling fluid: non / water hole diameter : 96 mm drilling information material substance consistency / relative density material description hand structure and classification penetration samples & field tests penetro meter graphic log additional obser vations method & support depth (m) SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components moisture condition symbol ŝ water (kPa) RL 40 30 2 10 40 30 2 10 MODERATELY WEATHERED TO SLIGHTLY WEATHERED SANDSTONE. (continued) |||||||||||||||||||||||||-16 | | | |COAL: black. |||||||||17 0 ||||||||||||||||||||| | | |-15 ||||||18.0 111 SILTSTONE. ||||||30/10/2018 11:42 ||||||SANDSTONE FRESH ||||| | | |||||14 | | | | |||||| | | |19.0 ||||| | | || | | |||||| | | || | | |13 754-NTLGE220504.GPJ R 20.0 ||||||||||||||||||||||||||||||| | | |12 LIBRARY.GLB rev:AS Log COF BOREHOLE: NON CORED ||||| | | |21.0 ||||| | | || | | |||||111 ||||||| | | |111 ||||||-11 22.0 ||||||||||||||||||||||||||||| | | |-10 ||||| | | |23.0 ||||| | | | |||||| | | |90 ||||||||||-9 ||||||method AD auger drilling* classification symbol & samples & field tests B bulk disturbed sample support consistency / relative density soil description N nil VS M mud verv soft based on Unified AS auger screwing' C casing D E disturbed sample S F soft HA W hand auger Classification System environmental sample firm penetration washbore SS split spoon sample St stiff RR rock roller/tricone undisturbed sample ##mm diameter hand penetrometer (kPa) standard penetration test (SPT) moisture D dry M mois W wet very stiff VSt no resistance ranging to refusal U## HP N H Fb hard dry moist wet plastic limit friable N* SPT - sample recovered VL very loose bit shown by suffix 10-Oct-12 water level on date shown Wp WI T SPT with solid cone Nc loose L e.g. B T AD/T İiguid limit VS vane shear; peak/remouded (kPa) MD medium dense blank bit vater inflow D VD

R

HB

water outflow

refusal

hammer bouncing

dense

very dense

TETRA TECH	COMPANY	Borehole ID.	BH04
Enai	nooring Log Boroholo	sheet:	4 of 13
Engi	neering Log - Borenole	project no.	754-NTLGE220504
client:	Crescent Newcastle Pty Ltd	date started:	12 Sep 2018
principal:		date completed:	14 Sep 2018
project:	Proposed Multi Building Residential Development	logged by:	MJ
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB

CDF_0_9_06_LIBRARY.GLB rev.AS Log COF BOREHOLE: NON CORED 754-NTLGE220504.GPJ <<DrawingFile>> 30/10/2018 11:42

position: E: 385,684.5; N: 6,355,567.6 (MGA94)								surface elevation: 32.8 m (AHD)	ä	angle f	rom ho	rizontal: 9	90°
drill	model: Co	omac	chio 450P,	Trac	k moun	ted		drilling fluid: non / water	ł	hole dia	ameter	: 96 mm	
drilling information material su								stance					
nethod & support	penetration	vater	samples & field tests	RL (m)	depth (m)	jraphic log	classification symbol	material description SOIL TYPE: plasticity or particle characteristic colour, secondary and minor components	2,	noisture	consistency / elative density	hand penetro- meter (kPa) 8 8 8 8	structure and additional observations
method survey and surv		wa		<u>⊿</u> - 	<u>i</u> g − − − 25.0− − − − − − − − − − − − − − − − − − −		cla. syn	SANDSTONE. (continued) TUFF. COAL: black, with some sand.		00 00	con		FRESH
met AD AS HA W RR	I I I I	Ølsu60/71 rilling crewin ger re er/tric	* ng* xone	-4 3 2 2 1 C c o pen		N	nil	SANDSTONE. Samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa)	class class class cla	sification soil dess assed on assificat	on symia scription n Unifician		consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard
 bit shown by suffix e.g. AD/T B blank bit T TC bit V V bit 					er Land In-1 Ieve wat wat	refusa Oct-12 wa el on date er inflow er outflow	l ater shown	N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	M m W we Wp pla WI liq	óist et astic lim quid limi	nit t		Fb friable VL very loose L loose MD medium dense D dense VD very dense

A TETRA TECH	COMPANY	Borehole ID.	BH04
Enai	nooring Log Porcholo	sheet:	5 of 13
Engi	neering Log - Borenole	project no.	754-NTLGE220504
client:	Crescent Newcastle Pty Ltd	date started:	12 Sep 2018
principal:		date completed:	14 Sep 2018
project:	Proposed Multi Building Residential Development	logged by:	MJ
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB

F	position: E: 385,684.5; N: 6,355,567.6 (MGA94))	surface elevation: 32.8 m (AHD)	angle	angle from horizontal: 90°			
¢	drill model: Comacchio 450P, Track mounted								drilling fluid: non / water	hole of	diamete	r : 96 mm		
L	drilli	ng infor	mati	ion			mate	erial sub	ostance					
	letnoa & upport	penetration	/ater	samples & field tests	(L (m)	epth (m)	raphic log	lassification ymbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	noisture ondition	onsistency /	hand penetro- meter (kPa)	structure and additional observations	
CDF_0_9_06_LIBRARY.GLB rev.AS Log COF BOREHOLE: NON CORED 754.NTLGE20564.GPJ < <drawingfile>> 30/10/2018 11:42</drawingfile>	ddnsN		wate			a a -	den 6	class	SANDSTONE. (continued)	oond	elativ		FRESH	
	metho AD AS HA W RR * e.g. B T	od auger d auger s hand au washbo rock roll bit show AD/T blank bi TC bit	rilling ger re er/tric m by t	* ng* cone suffix	sup M C pen wat	port mud casing etration er ∎ ∎ leve wat wat	N no res rangir refusa Oct-12 we el on date er inflow er outflow	nil sistance ig to al ater e shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	classifica soil d based Classific Moisture D dry M moist W wet Wp plastic I Wi liquid lin	tion sym escriptio on Unifie ation Sys	h bol & n tem	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense	

A TETRA TECH	COMPANY	Borehole ID.	BH04
Enai	nooring Log Porcholo	sheet:	6 of 13
Engi	neering Log - Borenole	project no.	754-NTLGE220504
client:	Crescent Newcastle Pty Ltd	date started:	12 Sep 2018
principal:		date completed:	14 Sep 2018
project:	Proposed Multi Building Residential Development	logged by:	MJ
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB

	locat	ion:	11	- 13 Mo	sbr	i Cre	scen	t, Co	oks Hill,	NSW		checked by: RB					
	positi	on: E:3	85,6	84.5; N: 6,3	855,56	7.6 (M	GA94))	surface e	levation: 32	.8 m (AHD)		angle	from ho	orizontal:	90°	
	drill m	nodel: Co	omac	chio 450P,	Trac	k moun	ited		drilling flu	uid: non/wa	ater		hole o	diamete	r : 96 mm	l	
	drilli	ng info	mati	on			mate	erial sub	stance					>			
	method & support	penetratior	vater	samples & field tests	3L (m)	depth (m)	graphic log	classificatior symbol	SOIL	materia TYPE: plasticit our, secondary	al description ty or particle character and minor compone	eristic, ents	moisture	consistency / elative densit	hand penetro- meter (kPa) 8 8 8 8	add	structure and itional observations
		3.67	-		_	-			SANDSTO	NE. (continue	ed)			02	- 0.0.4	FRESH	
					-	-											
					8	-											
						41.0-	· · · · ·										
					-	-											
					9	-			COAL: blac								
						42.0											
1:42					-	-			SILTSTON	E							
2018 1					10	-			COAL.								
> 30/10/						43.0-	· · · · ·		SANDSTO	NE.							
vingFile>					-	-											
J < <drav< td=""><td></td><td></td><td></td><td></td><td>11</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></drav<>					11	-											
504.GP	- RR -					44.0-											
TLGE220					-	-											
754-N ⁻					12	-											
N CORE						45.0-											
DLE: NO					-	-											
OREHC					13	-											
COFB						46.0-											
AS Log					F	-											
SLB rev:						-											
RARY.G					14	- 47 0											
06_LIBF																	
F_0_9_(-											
C					15	-	· · · · ·										
	Meth AD	od auger d	rilling	*	sup M	port mud	sam N nil B			es & field tests bulk disturb	s ed sample		classificat soil de	escription	bol & n ad	consiste VS	ency / relative density very soft
	HAW	hand au washbo	iger re	.9	pen	etration	I		E SS	environmen split spoon s	ample ital sample sample		Classifica	ation Sys	tem	F St	firm stiff
	RR	rock rol	er/tric	cone		- 7 6 -	no res rangin	istance ig to	U## HP	undisturbed hand penetr	l sample ##mm diam rometer (kPa)	neter	moisture D dry			VSt H	very stiff hard
	*	bit shov	/n by	suffix	wat	er 10-	refusa Oct-12 watakan	u ater	N N*	standard pe SPT - samp	enetration test (SPT) le recovered		M moist W wet	imit		Fb VL	friable very loose
	e.g. B	AD/T blank bi	t			▲ leve wat	el on date er inflow	shown	NC VS R	SPT with so vane shear; refuse!	plia cone peak/remouded (kP	Pa)	WI liquid lin	nit			Ioose medium dense dense
	T TC bit V V bit					wate			HB	hammer bo	uncing					VD	very dense

A TETRA TECH	I COMPANY	Borehole ID.	BH04		
Enai	nooring Log Porcholo	sheet:	7 of 13		
Eng	neering Log - Borenole	project no.	754-NTLGE220504		
client:	Crescent Newcastle Pty Ltd	date started:	12 Sep 2018		
principal:		date completed:	14 Sep 2018		
project:	Proposed Multi Building Residential Development	logged by:	MJ		
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB		

Γ	position: E: 385,684.5; N: 6,355,567.6 (MGA94)							GA94)	surface elevation: 32.8 m (AHD) angle from horizontal: 90°	
	drill r	noc	lel: C	oma	cchio 450P,	Trac	k moun	ted		drilling fluid: non / water hole diameter : 96 mm	
Ī	drill	Irilling information mate						mate	erial sub	stance	
	nethod & upport		penetration	/ater	samples & field tests	tL (m)	epth (m)	raphic log	lassification ymbol	material description Age of the product of the prod	
ŀ	<u>ہ ع</u>	-	9 Ø	\$		Ľ	σ	<u>Б</u>	ິດິດ	SANDSTONE. (continued)	
						16	- - - 49.0				
						17	- - - 50.0				
ingFile>> 30/10/2018 11:42						18	- - 51.0 -				
_GE220504.GPJ < <draw< td=""><td>YX Z</td><td></td><td></td><td></td><td></td><td>19</td><td>- - 52.0— -</td><td></td><td></td><td></td><td></td></draw<>	YX Z					19	- - 52.0— -				
NON CORED 754-NTI						20	- - 53.0— -			COAL.	- - - - - -
Log COF BOREHOLE:						21	- - 54.0—			SANDSTONE.	
5_LIBRARY.GLB rev:AS						22	- - 55.0—			SILTSTONE. 1 SANDSTONE. 1	
CDF_0_9_00						23	-				
	metl AD AS HA W RR * e.g. B T V	hoda a h w rc b A b T V	uger and a ashb ock ro D/T ank b C bit bit	drilling screw uger ore ller/tri wn by	r* ng* cone suffix	sup M I C Q pen wate	port mud casing etration er er ∎ leve wat	N no rea rangin refusa Oct-12 w el on date er inflow er outflow	l nil sistance ng to ater ater shown	samples & field tests consistency / relative density B bulk disturbed sample soil description D disturbed sample based on Unified E environmental sample Classification System SS split spoon sample Classification System U## undisturbed sample ##mm diameter F HP hand penetrometer (kPa) D N standard penetration test (SPT) M N' SPT - sample recovered W VS vane shear; peak/remouded (kPa) W R refusal MD HB hammer bouncing VD	

A TETRA TECH	COMPANY	Borehole ID.	BH04
Enai	nooring Log Porcholo	sheet:	8 of 13
Engi	neering Log - Borenole	project no.	754-NTLGE220504
client:	Crescent Newcastle Pty Ltd	date started:	12 Sep 2018
principal:		date completed:	14 Sep 2018
project:	Proposed Multi Building Residential Development	logged by:	MJ
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB

HB

hammer bouncing

very dense

30/10/2018 11:42 754-NTLGE220504.GPJ LIBRARY.GLB rev:AS Log COF BOREHOLE: NON CORED 90

V bit

A TETRA TECH	COMPANY	Borehole ID.	BH04
Engi	nooring Log Borcholo	sheet:	9 of 13
Engi	neering Log - Borenole	project no.	754-NTLGE220504
client:	Crescent Newcastle Pty Ltd	date started:	12 Sep 2018
principal:		date completed:	14 Sep 2018
project:	Proposed Multi Building Residential Development	logged by:	MJ
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB

position: E: 385,684.5; N: 6,355,567.6 (MGA94) surface elevation: 32.8 m (AHD) angle from horizontal: 90° drill model: Comacchio 450P, Track mounted drilling fluid: non / water hole diameter : 96 mm drilling information material substance classification symbol consistency / relative density material description hand structure and penetration samples & field tests graphic log penetro meter additional obse vations method & support depth (m) SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components moisture condition ŝ water (kPa) RL 40 3 2 0 10 SANDSTONE. (continued) FRESH |||||||||||||||||||||||||-32 | | | || | | |65.0 ||||||||||||||||||||| | | |-33 ||||||66.0 111 ||||||||||||||||| | | |||||-34 | | | | |||||| | | |67.0 ||||| | | || | | ||||||||||| | | |||||-35 ||||||R 68.0 ||||||||||||||||||||||||||| | | |||||| | | |-36 ||||| | | |69.0 ||||SILTSTONE. | | | || | | |||||____ ||||||| | | |_ -37 70.0 SANDSTONE. 1 | | | |||||||||||||||||||||||| | | |||||| | | |SILTSTONE -38 ||||_ | | | |71.0 |||| | | | |SANDSTONE. ||||| | | |8 |||||| | | |Ę |||||-39 ||||||method AD auger drilling* classification symbol & samples & field tests B bulk disturbed sample support consistency / relative density soil description N nil VS Μ mud verv soft based on Unified AS auger screwing' C casing D E disturbed sample S F soft HA W hand auger Classification System environmental sample firm penetration washbore SS split spoon sample St stiff RR rock roller/tricone undisturbed sample ##mm diameter hand penetrometer (kPa) standard penetration test (SPT) moisture D dry M mois W wet very stiff VSt no resistance ranging to refusal U## HP N H Fb hard dry moist wet plastic limit friable very loose N* SPT - sample recovered VL bit shown by suffix 10-Oct-12 water level on date shown Wp WI ▼ SPT with solid cone Nc loose L e.g. B T AD/T İiguid limit VS vane shear; peak/remouded (kPa) MD medium dense blank bit vater inflow D VD R refusal dense TC bit vater outflow HB hammer bouncing very dense V bit

30/10/2018 11:42 754-NTLGE220504.GPJ LIBRARY.GLB rev:AS Log COF BOREHOLE: NON CORED

A TETRA TECH	I COMPANY	Borehole ID.	BH04		
Enai	nooring Log Porcholo	sheet:	10 of 13		
Engi	neering Log - Borenole	project no.	754-NTLGE220504		
client:	Crescent Newcastle Pty Ltd	date started:	12 Sep 2018		
principal:		date completed:	14 Sep 2018		
project:	Proposed Multi Building Residential Development	logged by:	MJ		
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB		

ć	drill n drill	nod	lel: C	oma	cchio 450P,	Track	k moun	ited		drilling fluid: non / water	hole di	iameter	: 96 mm			
Г	drill									drilling fluid: non / water hol			ole diameter : 96 mm			
ᄂ	drilling information m							mate	rial sub	ostance						
•	nethod & upport		penetration	vater	samples & field tests	KL (m)	lepth (m)	Iraphic log	lassification symbol	material description SOIL TYPE: plasticity or particle characteristic colour, secondary and minor components	, noisture condition	onsistency / elative density	hand penetro- meter (kPa)	structure and additional observations		
ŀ		-	<u>9 19</u>	>		<u>u</u>	0	, 	0 0	SANDSTONE. (continued)	20	02	<u>5 2 8 4</u>	FRESH -		
						- 40	-									
						-	73.0— - -									
						41	- 74.0—									
le>> 30/10/2018 11:42						42	- - 75.0—									
220504.GPJ < <drawingfi< th=""><td></td><td></td><td></td><td></td><td></td><td>43</td><td>- - 76.0—</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></drawingfi<>						43	- - 76.0—									
ON CORED 754-NTLGE						44	- - 77.0									
AS Log COF BOREHOLE: N						45	- - 78.0 - -									
9_06_LIBRARY.GLB rev.						46	- - 79.0									
CDF_0_					 	47	-				classificatio	on svml				
	meth AD AS HA W RR * e.g. B T	hod au ha vv ro bi Al bl	uger and a ashb ock ro b/T ank b C bit	drilling screw uger ore ller/tri wn by bit)* cone suffix	sup M r C c pen wate	port mud casing etration er er unt leve wate wate	N no reserangin refusa Oct-12 wa el on date er inflow er outflow	nil istance g to ater shown	samples & tield tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	soli des based o Classificat D dry M moist W wet Wp plastic lin WI liquid limi	nit	d tem	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense		

TETRA TECH	COMPANY	Borehole ID.	BH04
Enai	naaring Lag Barahala	sheet:	11 of 13
Engi	neering Log - Borenole	project no.	754-NTLGE220504
client:	Crescent Newcastle Pty Ltd	date started:	12 Sep 2018
principal:		date completed:	14 Sep 2018
project:	Proposed Multi Building Residential Development	logged by:	MJ
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB

CDF_0_9_06_LIBRARY.GLB rev.AS_Log_COF BOREHOLE: NON CORED_754-NTLGE220504.GPJ_<<DrawingFile>> 30/10/2018 11:42

р	ositio	sition: E: 385,684.5; N: 6,355,567.6 (MGA94) surface elevation: 32.8 m (AHD) angle from horizontal: 9											orizontal: 9	0°
d	rill m	odel: C	Comad	cchio 450P,	Trac	k moun	ted		drilling fluid: non / water		hole d	iametei	r : 96 mm	
drilling information materia								rial sub	stance					
		u					_	u	material description			/ sity	hand	structure and
α τ	5 7 E	etrati		samples & field tests		Ê	cloc	icati	SOIL TYPE: plasticity or particle characteristi	c.	e u	ency	penetro- meter	additional observations
	oddr	pene	ater		ے ۲	epth	aphi	assif	colour, secondary and minor components	-1	oistu	Iative	(kPa)	
1	เร	3 6 7	š		R	ğ	<u>Б</u>	ŝċ			έö	8 5	400 200	55501
						-			SANDSTONE. (continued)				; ; ; ; '	FRESH -
					F	-								-
						-								
					48	-								-
						81.0-								-
						-	::::							-
					Γ	-							i i i i	-
						-								
					49	-								
		iii				82.0-							i i i i	_
					L	-								-
						-								-
		iii				-			SILTSTONE.				i i i i	-
					50	-								
						83.0-								
					-	-								-
						-	··							-
					54	-								-
	ļ				51	-								=
2	Ĩ					04.0								
		İİİ			-	_							iiii	-
							· _ ·							
					52	_	· ·							-
						85.0-								-
						-	<u></u>							-
					-	-	— · -							-
						-	· _ · ·							
					53	-	· ·							-
		111				86.0-			SANDSTONE.				i i i i i	_
					L	-								-
						-								-
						-								-
					54	-								-
						87.0-								
					F	-								-
						-								-
						-								-
					55									
method support					sup	port			samples & field tests	c	assificati	ion sym	bol &	consistency / relative density
/	4S	auger	screwi	ng*	M C	mud casing	N	nil	B bulk disturbed sample D disturbed sample		based of	on Unifie	ed	vS very soft S soft
1	HA hand auger W washbore RR rock roller/tricone				pen	etration			E environmental sample		Classifica	tion Sys	tem	F firm St stiff
				cone	ne			istance	U## undisturbed sample ##mm diameter	moi	sture			VSt very stiff
Í						<u></u>	rangin refusa	ig to I	N standard penetration test (SPT)	D M	dry moist			H hard Fb friable
Į ,	* bit shown by suffix					er ▼_ 10-	Oct-12 wa	ater	N* SPT - sample recovered Nc SPT with solid cone	W Wp	wet plastic lir	mit		VL very loose
ľ	e.g. 3	AD/T blank b	oit			wat	er inflow	SNOWN	VS vane shear; peak/remouded (kPa)	wi	WI liquid limit MD			MD medium dense
T TC bit V V bit					water outflow				R refusal HB hammer bouncing					VD very dense

A TETRA TECH	I COMPANY	Borehole ID.	BH04
Enai	naaring Lag Barahala	sheet:	12 of 13
Eng	ineering Log - Borenole	project no.	754-NTLGE220504
client:	Crescent Newcastle Pty Ltd	date started:	12 Sep 2018
principal:		date completed:	14 Sep 2018
project:	Proposed Multi Building Residential Development	logged by:	MJ
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB

ſ	positi	on: E:3	85,6	84.5; N: 6,3	55,56	7.6 (M	GA94)	surface elevation: 32.8 m (AHD)	angl	e from he	orizontal: 9	90°									
	drill n	nodel: C	oma	cchio 450P,	Trac	k moun	ted		drilling fluid: non / water	hole	hole diameter : 96 mm											
	drill	ing info	mati	ion			mate	erial sub	stance													
	nethod & upport	penetration	vater	samples & field tests	KL (m)	lepth (m)	raphic log	lassification ymbol	material description SOIL TYPE: plasticity or particle characteristi colour, secondary and minor components	noisture	onsistency / elative density	hand penetro- meter (kPa)	structure and additional observations									
		3 5 7	5		Ľ.	-	6	0 0	SANDSTONE. (continued)	20	02	10 10 10 10 10 10 10 10 10 10	FRESH									
					- 56	-							-									
					30	89.0			SANDSTONE.				-									
					57	-							-									
01					-	90.0							-									
30/10/2018 11:42				1	58	- - 91.0—							-									
220504.GPJ < <drawingfile< td=""><td></td><td></td><td></td><td>59</td><td>- - 92.0</td><td></td><td></td><td>NO CORE: 1.65m (92.10-93.75 m) Tool drop</td><td></td><td></td><td></td><td>-</td></drawingfile<>					59	- - 92.0			NO CORE: 1.65m (92.10-93.75 m) Tool drop				-									
ON CORED 754-NTLGE					60	- - 93.0—							-									
S Log COF BOREHOLE: N														61	-61 -6 94.0-	· · · · · · · · · · · · · · · · · · ·	 : :	CAVE IN: SILTSTONE AND COAL				-
06_LIBRARY.GLB rev:A									62	62							-					
CDF_0_9					63	-																
	meth AD AS HA W RR	method support AD auger drilling* AS auger screwing* HA hand auger N washbore RR rock roller/tricone				port mud casing etration	N no res rangir refusa	nil sistance ig to	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard genetration test (SPT)	classific soil base Classifi moisture D dry M moist	ation sym descriptio d on Unifie cation Sys	bol & n ed stem	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable									
	* B T V	bit shov AD/T blank b TC bit V bit	/n by t	suffix	wate	er 	Oct-12 wa el on date er inflow er outflow	ater shown v	N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	W wet Wp plastic WI liquid	limit imit		VL very loose L loose MD medium dense D dense VD very dense									

A TETRA TECH	COMPANY	Borehole ID.	BH04
Enai	naaring Lag Barahala	sheet:	13 of 13
Engi	neering Log - Borenole	project no.	754-NTLGE220504
client:	Crescent Newcastle Pty Ltd	date started:	12 Sep 2018
principal:		date completed:	14 Sep 2018
project:	Proposed Multi Building Residential Development	logged by:	MJ
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB

delificación consistención reactival description reactival descri		position: E: 385,684.5; N: 6,355,567.6 (MGA94) surface elevation: 32.8 m (AHD)										angle from horizontal: 90°						
drifting of construction material discription		drill n	nodel: C	omad	chio 450P,	Trac	k moun	ted		drilling fluid: non / water	hole	diamete	r:96	6 m	m			
V 10000 V 10000 V 1000000 V 1000000 V 1000000 V 1000000 V 1000000 V 1000000 V 1000000 V 1000000 V 100000000 V 10000000 V 100000000 V 10000000000		drill	ing info	rmati	on			mate	erial sub	bstance	1		1					
Note of the second s			tion		samples &		_	D _D	tion	material description		y / nsity	h	and		structure and		
Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit		ort 8	netra	2	field tests	Ê	ш Ч	hic lo	sifica bol	SOIL TYPE: plasticity or particle characteristic	sture	istenc ve de	meter		r	autitional observation	15	
Predoc -44 97.0 -5 98.0 -5 <t< td=""><th></th><td>meth</td><td>Del Del</td><td>wate</td><td></td><td>RL (</td><td>dept</td><td>grap</td><td>clas: syml</td><td>colour, secondary and minor components</td><td>mois</td><td>cons</td><td>4) 8 2 8</td><td>kPa) §§</td><td>100</td><td></td><td></td></t<>		meth	Del Del	wate		RL (dept	grap	clas: syml	colour, secondary and minor components	mois	cons	4) 8 2 8	kPa) §§	100			
Projection -64 00.0 -74								° °		CAVE IN: SILTSTONE AND COAL (continue	d)			<u> </u>	Ì	FRESH		
Image: second						F	-	• •							ł			
V 1000000000000000000000000000000000000			iii.				-	• •					i i	ii	i		-	
Image: Second						64		• •										
Image: Provide ander Provide Ander Provide Ander Provide Ander Provide Ander Provid						-04	97.0-	0 0							i		_	
Image: Construction of your status -65 8.0 0 -65 9.0 0 -65 10.0 0 <td< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td>-</td><td>0 0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>!</td><td></td><td></td></td<>							-	0 0							!			
0 -55 98.0 -56 -56 -56 98.0 -56 -56 -56 -56 -56 -56 -56 -56 -56 -56 -56 -56 -56 -56 -56 -56						-	-	• •										
1 -65 80.0 -0.0 -0.0 0 -65 90.0 -0.0 -0.0 -0.0 0 -65 90.0 -0.0 -0.0 -0.0 0 -65 90.0 -0.0 -0.0 -0.0 0 -65 90.0 -0.0 -0.0 -0.0 0 -67 (00.0 -0.0 -0.0 -0.0 0 -67 (00.0 -0.0 -0.0 -0.0 0 -67 (00.0 -0.0 -0.0 -0.0 0 -67 (00.0 -0.0 -0.0 -0.0 0 -67 (00.0 -0.0 -0.0 -0.0 0 -67 (00.0 -0.0 -0.0 -0.0 1 -67 (00.0 -0.0 -0.0 -0.0 -0.0 1 -70 (00.0 -0.0 -0.0 -0.0 -0.0 -0.0 1 -71 -71 -71 -71 -71 -71 -71 -71 -71 -71 -71 </td <th></th> <td></td> <td>i i i</td> <td></td> <td></td> <td></td> <td>- </td> <td>• •</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ì</td> <td></td> <td>-</td>			i i i				-	• •							ì		-	
9 0						65	-	0 0										
Note Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Note: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image: Contraction synthem Image:							98.0-	0 0							ì		-	
generation -68 98.0 -67 SANDSTORE -67 00.0 -67 00.0 -67 00.0 -68 01.0 -68 01.0 -68 01.0 -68 -68 01.0 -68 01.0 -68 01.0 -68 -70 03.0 -77 03.0 -68 10.0 -68 -77 03.0 -77 03.0 -68 10.0 -68 -77 03.0 -77 03.0 -77 03.0 -77 -77 03.0 -77 03.0 -77 03.0 -77 03.0 -77 03.0 -77 0			111				-	0 0					i i	Ì	Ì			
The second se	42					Γ	-	0 0							H		_	
Both Control 66 99.0 67 00.0 67 00.0 67 00.0 67 00.0 67 00.0 68 01.0 68 01.0 68 01.0 68 01.0 68 00.0 67 00.0 67 00.0 67 00.0 68 01.0 68 01.0 68 00.0 68 00.0 68 00.0 68 00.0 68 00.0 68 00.0 68 00.0 68 00.0 68 00.0 68 00.0 70	8 11:						-	0 0		L			; ;		ì		-	
85	0/201	- RR.				66	-			SANDSTONE.					ļ			
Age Image: All intervent of the state	30/1						99.0 —										-	
But is in the image of the	File>>		iii			L	-						i i	ii	i			
The second se	wing						-										-	
1 1 -67 00.0 -67 00.0 -67 00.0 -67 00.0 -67 00.0 -68 01.0 0.0 <t< td=""><th><<dra< th=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dra<></th></t<>	< <dra< th=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dra<>						-											
Tell Image: Construction of the second second method of the second second method of the second second method of the second second method of the second second method of the second second method of the second second method of the second second method of the second second method of the second second method of the second second method of the second second method of the second second method of the second second method of the second second method of the second second method of the second second method of the second second method m	- L9E					67	-						l i i		Ì			
Nethod Big of diling R support registro registro s	504.0						100.0										-	
Treihod RR Approt RR Support RR <th>E220</th> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ì</td> <td></td> <td></td>	E220					-	-								Ì			
The final of the second se	NTLG						-								!		-	
age i i i i i i i i i i i i i i i i i i i	754-					- 69												
Object Image: consistency / relative density Output Image: consistency / relative density Image: consistency / relative density Image: consistency / relative density Image: consistency / relative density V Image: consistency / relative density V Image: consistency / relative density V Image: consistency / relative density V Image: consistency / relative density V Image: consistency / relative density V Image: consistency / relative density V Image: consistency / relative density V Image: consistency / relative density V Image: consistency / relative density V Image: consistency / relative density V Image: consistency / relative density V Image: consistency / relative density V Image: consistency / relative density V Image: consistency / relative density V Image: consistency / relative density V Image: consistency / relative density V Image: consistency / relative density V Image: consistency / relative densing V Image: cons	RED		liii.			-00	101.0-						i i	ii	i		_	
000000000000000000000000000000000000	NCO						-											
0 method ND 1 i	л П П		iii.			F	-								ì			
go I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	ЧЧ	• •								Deschols DU04 terrisolation in the dat 404 00 re-								
u group	BORE					69	-			Target depth					ì			
or green I I I I I I I I I I I I I I I I I I I	COF						02.0-								Ì		-	
Status 70 71	Log					L	-								H			
understand understand <th>V:AS</th> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td>Ì</td> <td></td> <td>_</td>	V:AS						-								Ì		_	
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LBre						-								ļ			
Total 103.0 <td< td=""><th>RY.G</th><td></td><td></td><td></td><td></td><td>70</td><td>- </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	RY.G					70	-											
Image: second	-IBRA					·	03.0 —	1					i i	ii	i		-	
method AD auger drilling* AS auger screwing* HA hand auger W washbore RR rock roller/tricone support M mud C casing samples & field tests B bulk disturbed sample D disturbed sample E environmental sample S split spoon sample U## undisturbed sample E environmental sample S split spoon sample U## undisturbed sample B blank bit T T C bit V V bit classification symbol & soil description based on Unified Classification System consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hand penetrometer (kPa) N standard penetration test (SPT) N SPT - sample recovered NC SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal moisture D dry M moist VSt very stiff H hand Polection VL very loose L loose VD very dense	90					-	-											
B support samples & field tests classification system consistency / relative density M AD auger drilling* AD auger drilling* B bulk disturbed sample bulk disturbed sample based on Unified VS very soft HA hand auger penetration penetration b b disturbed sample S soil description S soft P washbore penetration penetration penetration b Wff water moisture S soft S soft * bit shown by suffix e.g. AD/T moist wer N sstand penetration test (SPT) N moist Fb friable V V Vit vetr outlow water inflow water inflow vetr edusal N seak? peak/remouded (kPa) N moist W ND medium dense V V V V V V V VD very dense	0 0						-	1							i		-	
method AD support samples & field tests classification symbol & soil description consistency / relative density AS auger drilling* AS M mud N nil B bulk disturbed sample b soil description b very soft S soft S soil description very soft S soil description very soft S soil description very soft S soil description very soft S soil description very soft S soil description very soft S soil description very soft S soil description very soft S soil description very soft S soil description very soft S soil description very soft S soil description very soft S soil description very soft S soif F firm S soif S soif S soif S soif S soif S soif S soif S S S S S S S S S S S S S S	CDF						-	1										
method AD auger drilling* AS support M mud samples & field tests classification symbol & soil description consistency / relative density AS auger drilling* AS auger screwing* HA mud N nil C casing B bulk disturbed sample based on Unified S soil description W washbore penetration F firm RR rock roller/tricone no resistance ranging to water no resistance ranging to registance no resistance ranging to refusion N standed penetrometer (KPa) N standed penetrometer (KPa) * bit shown by suffix e.g. AD/T fillow vetr N' SPT - sample recovered N' V						71	_											
AD auger drilling M mud N nill B bulk disturbed sample based on Unified S very soft HA hand auger penetration C casing D disturbed sample based on Unified S soft W washbore penetration S soft S soft RR rock roller/tricone penetration no resistance ranging to U## undisturbed sample VE Vit very soft * bit shown by suffix e.g. AD/T no resistance N* SPT - sample recovered N W Wet VL very losse B blank bit medium dense N refusal NR refusal MD medium dense V V V V HB hammer bouncing HB ND very dense		meth	od		*	sup	port			samples & field tests	classifica	tion sym	bol 8	k		consistency / relative dens	ity	
HA hand auger penetration E environmental sample Classification System F firm RR rock roller/tricone N° penetration S split spoon sample Moisturde sample #mm diameter N St stiff * bit shown by suffix e.g. AD/T no resistance no resistance N* SPT - sample recovered N Moisturde Fb friable V V bit tevel on date shown water 10-Oct-12 water N° SPT - sample recovered N° Wwet V V V V V W Imit Im		AD	auger o	crewi	ng*	M i C d	mud casing	N	nil	B bulk disturbed sample D disturbed sample	based	on Unifie	ed			VS very soft S soft		
RR rock roller/tricone rock rock roller/tricone rock rock roller/tricone rock rock rock rock rock rock rock rock		HA W	hand a washbo	uger ore		pen	etration			E environmental sample	Classific	ation Sys	stem			F firm		
* bit shown by suffix ranging to water HP hand penetrometer (kPa) D dry H hard * bit shown by suffix refusal N standard penetrometer (kPa) M moist Fb friable e.g. AD/T In-Oct-12 water N* SPT - sample recovered W wet VL very loose B blank bit water inflow water inflow R refusal R refusal ML blank D dense V V bit Vit HB harmer bouncing HB VD very dense		RR	rock rol	ler/tric	cone	B	- 0. 0	no res	sistance	U## undisturbed sample ##mm diameter	moisture					VSt very stiff		
* bit shown by suffix e.g. water N* SPT - sample recovered W Wet VL very loose B blank bit T TC bit V Vit 10-Oct-12 water level on date shown water inflow N* SPT - sample recovered Wp plastic limit Wil liquid limit Up plastic limit Wil liquid limit L loose MD medium dense R refusal HB hammer bouncing V VD very dense							<u></u>	rangir refusa	ng to al	HP hand penetrometer (kPa) N standard penetration test (SPT)	D dry M moist					H hard Fb friable		
e.g. AU/1 B blank bit T TC bit V V bit V V bit V V bit		*	bit show	vn by	suffix	wate	er V 10-	Oct-12 w	ater	N* SPT - sample recovered Nc SPT with solid cone	W wet Wp plastic l	imit				VL very loose		
T TC bit K rerusal D dense V V bit HB hammer bouncing VD very dense		e.g. B	AD/T blank b	it			leve wat	er inflow	SNOWN	VS vane shear; peak/remouded (kPa)	Wi liquid lin	mit				MD medium den	se	
		T TC bit					- wat	er outflov	v	R refusal HB hammer bouncing						VD dense VD very dense		

A TETRA TECH	COMPANY	Borehole ID.	BH04A
	neering Leg. Derehele	sheet:	1 of 1
Engi	neering Log - Borenole	project no.	754-NTLGE220504
client:	Crescent Newcastle Pty Ltd	date started:	14 Sep 2018
principal:		date completed:	14 Sep 2018
project:	Proposed Multi Building Residential Development	logged by:	MJ
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB

position: Not Specified surface eleva									surface elevation: 32.80 m (AHD)	angle	from ho	orizor	ntal:	90°	
d	rill m	odel: C	oma	cchio 450P,	Trac	k mour	ted		drilling fluid:	hole d	liamete	r : 30	0 mr	ım	
	drilli	ng info	mat	ion			mate	erial sub	ostance						
othod 8	upport	penetration	ater	samples & field tests	(H)	epth (m)	raphic log	lassification	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	noisture ondition	onsistency /	ha pen me	and etro- eter Pa)	structure and additional observations	3
	SL SL		Dbserved w	E	-	-	5	ŝ C	FILL: BITUMEN: black, fine to coarse gravel.	ĔIJ	Le CO	100	1 1 300	FILL- WEARING COURSE	
AD/	z		Not O	E	-32	-			FILL: Gravelly SAND: fine to coarse grained, brown, some pieces of fine to coarse subangular gravel, some pieces of brick, terracotta, steel, concrete and cobbles of sandstone and other					FILL - UNCONTROLLED	
					-	-	-		crushed rock. 0.3 m: Steel bar FILL: CONCRETE BOULDER: 110mm thick. FILL: Gravelly SAND: fine to coarse grained,						
N					-31	2.0-	-		brown, some pieces of fine to coarse subangular gravel, some pieces of brick, terracotta, steel, concrete and cobbles of sandstone and other crushed rock. Borehole BH04A terminated at 1.0 m Refusal						
e>> 30/10/2018 11:4					-30	- - 3.0-									
20504.GPJ < <drawingfil< td=""><td></td><td></td><td></td><td></td><td>-29</td><td>- - 4.0-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></drawingfil<>					-29	- - 4.0-									
ON CORED 754-NTLGE2					-28	- - 5.0									
Log COF BOREHOLE: N					-27	- - 6.0-									
06_LIBRARY.GLB rev:AS					-26	- - 7.0-									
CDF_0_9_(-25	-	-								
	method support AD auger drilling* AS auger screwing* HA hand auger W washbore RR rock roller/tricone			no res rangir	l nil sistance ng to	samples & field tests classifier B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (KPa) N standrad penetrometer (kPa)	classification symbol & soil description based on Unified Classification System				consistency / relative densit VS very soft S soft F firm St stiff VSt very stiff H hard Fh firable	ÿ			
	* bit shown by suffix e.g. AD/T B blank bit T TC bit V V bit					er 10- lev wat wat	Oct-12 w el on date er inflow er outflov	ater e shown w	N* SPT - sample recovered W Nc SPT with solid cone Wp VS vane shear; peak/remouded (kPa) WI R refusal HB hammer bouncing	1 moist / wet /p plastic limit /Ι liquid limit				VL very loose L loose MD medium dens D dense VD very dense	е

Appendix J – Analytical Laboratory Results

/ersion: 5

Icci COL 21 - oted Ditol

CERTIFICATE OF ANALYSIS

Work Order	EM1814966	Page	: 1 of 7
Client	COFFEY ENVIRONMENTS PTY LTD	Laboratory	Environmental Division Melbourne
Contact	: MR SIMON BAKER	Contact	: Graeme Jablonskas
Address	: 19 WARABRROK BOULEVARD	Address	: 4 Westall Rd Springvale VIC Australia 3171
	WARABROOK NSW, AUSTRALIA 2304		
Telephone		Telephone	: +61-3-8549 9609
Project	: 754-MELGE220504	Date Samples Received	: 18-Sep-2018 10:00
Order number	:	Date Analysis Commenced	: 19-Sep-2018
C-O-C number		Issue Date	24-Sep-2018 12:33
Sampler	: MERRICK JONES		Hac-MRA NATA
Site	:		
Quote number	: EN/222		Apprediction No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dilani Fernando	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Organics, Springvale, VIC

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.

Page : 3 of 7 Work Order : EM1814966 Client : COFFEY ENVIRONMENTS PTY LTD Project : 754-MELGE220504

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	nt sample ID	QC4	 	
	Cli	ient samplir	ng date / time	[12-Sep-2018]	 	
Compound	CAS Number	LOR	Unit	EM1814966-001	 	
				Result	 	
EA055: Moisture Content (Dried @ 105-11	10°C)					
Moisture Content		1.0	%	20.1	 	
EG005T: Total Metals by ICP-AES						
Arsenic	7440-38-2	5	mg/kg	10	 	
Cadmium	7440-43-9	1	mg/kg	<1	 	
Chromium	7440-47-3	2	mg/kg	13	 	
Copper	7440-50-8	5	mg/kg	13	 	
Lead	7439-92-1	5	mg/kg	18	 	
Nickel	7440-02-0	2	mg/kg	2	 	
Zinc	7440-66-6	5	mg/kg	23	 	
EG035T: Total Recoverable Mercury by F	IMS					
Mercury	7439-97-6	0.1	mg/kg	<0.1	 	
EP066: Polychlorinated Biphenyls (PCB)						
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	 	
EP068A: Organochlorine Pesticides (OC)						
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	 	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	 	
beta-BHC	319-85-7	0.05	mg/kg	<0.05	 	
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	 	
delta-BHC	319-86-8	0.05	mg/kg	<0.05	 	
Heptachlor	76-44-8	0.05	mg/kg	<0.05	 	
Aldrin	309-00-2	0.05	mg/kg	<0.05	 	
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	 	
^ Total Chlordane (sum)		0.05	mg/kg	<0.05	 	
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	 	
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	 	
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	 	
Dieldrin	60-57-1	0.05	mg/kg	<0.05	 	
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	 	
Endrin	72-20-8	0.05	mg/kg	<0.05	 	
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	 	
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	 	
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	 	
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	 	
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	 	

Page : 4 of 7 Work Order : EM1814966 Client : COFFEY ENVIRONMENTS PTY LTD Project : 754-MELGE220504

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	QC4	 	
	Cl	ient samplii	ng date / time	[12-Sep-2018]	 	
Compound	CAS Number	LOR	Unit	EM1814966-001	 	
				Result	 	
EP068A: Organochlorine Pesticides	(OC) - Continued					
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	 	
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	 	
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	 	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	 	
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	 	
	0-2					
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons					
Naphthalene	91-20-3	0.5	mg/kg	<0.5	 	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	 	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	 	
Fluorene	86-73-7	0.5	mg/kg	<0.5	 	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	 	
Anthracene	120-12-7	0.5	mg/kg	<0.5	 	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	 	
Pyrene	129-00-0	0.5	mg/kg	<0.5	 	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	 	
Chrysene	218-01-9	0.5	mg/kg	<0.5	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	 	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	 	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	 	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	 	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	 	
^ Sum of polycyclic aromatic hydrocarbo	ons	0.5	mg/kg	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	 	
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	 	
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	 	
EP080/071: Total Petroleum Hydroca	arbons					
C6 - C9 Fraction		10	mg/kg	<10	 	
C10 - C14 Fraction		50	mg/kg	<50	 	
C15 - C28 Fraction		100	mg/kg	<100	 	
C29 - C36 Fraction		100	mg/kg	<100	 	
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	 	
EP080/071: Total Recoverable Hydro	carbons - NEPM 201	3 Fraction	าร			

Page : 5 of 7 Work Order : EM1814966 Client : COFFEY ENVIRONMENTS PTY LTD Project : 754-MELGE220504

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	QC4	 	
	Cli	ient samplii	ng date / time	[12-Sep-2018]	 	
Compound	CAS Number	LOR	Unit	EM1814966-001	 	
				Result	 	
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fractio	ns - Continued			
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	 	
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	 	
(F1)						
>C10 - C16 Fraction		50	mg/kg	<50	 	
>C16 - C34 Fraction		100	mg/kg	<100	 	
>C34 - C40 Fraction		100	mg/kg	<100	 	
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	 	
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	 	
(F2)						
EP080: BTEXN						
Benzene	71-43-2	0.2	mg/kg	<0.2	 	
Toluene	108-88-3	0.5	mg/kg	<0.5	 	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	 	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	 	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	 	
^ Sum of BTEX		0.2	mg/kg	<0.2	 	
^ Total Xylenes		0.5	mg/kg	<0.5	 	
Naphthalene	91-20-3	1	mg/kg	<1	 	
EP066S: PCB Surrogate						
Decachlorobiphenyl	2051-24-3	0.1	%	87.8	 	
EP068S: Organochlorine Pesticide Su	rrogate					
Dibromo-DDE	21655-73-2	0.05	%	99.2	 	
EP068T: Organophosphorus Pesticide	Surrogate					
DEF	78-48-8	0.05	%	99.0	 	
EP075(SIM)S: Phenolic Compound Su	rrogates					
Phenol-d6	13127-88-3	0.5	%	95.6	 	
2-Chlorophenol-D4	93951-73-6	0.5	%	106	 	
2.4.6-Tribromophenol	118-79-6	0.5	%	64.2	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	0.5	%	123	 	
Anthracene-d10	1719-06-8	0.5	%	114	 	
4-Terphenyl-d14	1718-51-0	0.5	%	122	 	
EP080S: TPH/V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	0.2	%	71.6	 	
	11000 01-0		, s			

Page	: 6 of 7
Work Order	: EM1814966
Client	: COFFEY ENVIRONMENTS PTY LTD
Project	754-MELGE220504

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	QC4	 	
	Cli	ent samplii	ng date / time	[12-Sep-2018]	 	
Compound	nd CAS Number LOR Unit		EM1814966-001	 	 	
				Result	 	
EP080S: TPH(V)/BTEX Surrogates - Contin	ued					
Toluene-D8	2037-26-5	0.2	%	64.9	 	
4-Bromofluorobenzene	460-00-4	0.2	%	74.6	 	

Surrogate Control Limits

	Recovery	Limits (%)
CAS Number	Low	High
2051-24-3	36	140
21655-73-2	38	128
e		
78-48-8	33	139
13127-88-3	54	125
93951-73-6	65	123
118-79-6	34	122
321-60-8	61	125
1719-06-8	62	130
1718-51-0	67	133
17060-07-0	51	125
2037-26-5	55	125
460-00-4	56	124
	CAS Number 2051-24-3 21655-73-2 21655-73-2 13127-88-3 93951-73-6 118-79-6 321-60-8 1718-51-0 17060-07-0 2037-26-5 460-00-4	Recovery CAS Number Low 2051-24-3 36 2051-24-3 36 21655-73-2 38 21655-73-2 38 21655-73-2 38 21655-73-2 38 13127-88-3 54 93951-73-6 65 118-79-6 34 321-60-8 61 1719-06-8 62 1718-51-0 67 17060-07-0 51 2037-26-5 55 460-00-4 56

QUALITY CONTROL REPORT

Work Order	: EM1814966	Page	: 1 of 9
Client	: COFFEY ENVIRONMENTS PTY LTD	Laboratory	: Environmental Division Melbourne
Contact	: MR SIMON BAKER	Contact	: Graeme Jablonskas
Address	: 19 WARABRROK BOULEVARD WARABROOK NSW, AUSTRALIA 2304	Address	: 4 Westall Rd Springvale VIC Australia 3171
Telephone	·	Telephone	: +61-3-8549 9609
Project	: 754-MELGE220504	Date Samples Received	: 18-Sep-2018
Order number	:	Date Analysis Commenced	: 19-Sep-2018
C-O-C number	:	Issue Date	: 24-Sep-2018
Sampler	: MERRICK JONES		HAC-MRA NATA
Site	:		
Quote number	: EN/222		Approximation No. 025
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dilani Fernando	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Organics, Springvale, VIC

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

- CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- LOR = Limit of reporting
- RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL	Matrix: SOIL				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EA055: Moisture Cor	ntent (Dried @ 105-110°C)	(QC Lot: 1938815)									
EM1814921-001	Anonymous	EA055: Moisture Content		0.1	%	12.0	11.2	6.87	0% - 50%		
EM1814998-007	Anonymous	EA055: Moisture Content		0.1	%	7.2	7.2	0.00	No Limit		
EG005T: Total Metals	by ICP-AES (QC Lot: 19	39063)									
EM1814939-001	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit		
		EG005T: Chromium	7440-47-3	2	mg/kg	3	4	0.00	No Limit		
		EG005T: Nickel	7440-02-0	2	mg/kg	<2	<2	0.00	No Limit		
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.00	No Limit		
		EG005T: Copper	7440-50-8	5	mg/kg	<5	<5	0.00	No Limit		
		EG005T: Lead	7439-92-1	5	mg/kg	13	33	89.7	No Limit		
		EG005T: Zinc	7440-66-6	5	mg/kg	13	11	19.2	No Limit		
EM1814948-001	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit		
		EG005T: Chromium	7440-47-3	2	mg/kg	22	25	11.5	0% - 50%		
		EG005T: Nickel	7440-02-0	2	mg/kg	5	4	0.00	No Limit		
		EG005T: Arsenic	7440-38-2	5	mg/kg	15	23	41.6	No Limit		
		EG005T: Copper	7440-50-8	5	mg/kg	27	29	7.07	No Limit		
		EG005T: Lead	7439-92-1	5	mg/kg	38	41	7.76	No Limit		
		EG005T: Zinc	7440-66-6	5	mg/kg	22	24	8.74	No Limit		
EG035T: Total Reco	verable Mercury by FIMS	(QC Lot: 1939064)									
EM1814939-001	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.9	160	No Limit		
EM1814948-001	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit		
EP066: Polychlorina	ed Biphenyls (PCB) (QC	Lot: 1939176)									
EM1814939-013	Anonymous	EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.00	No Limit		
EP068A: Organochic	rine Pesticides (OC) (QC	Lot: 1939175)									
EM1815026-005	Anonymous	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit		

Page	: 3 of 9
Work Order	: EM1814966
Client	: COFFEY ENVIRONMENTS PTY LTD
Project	754-MELGE220504

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP068A: Organochlo	rine Pesticides (OC) (QC L	ot: 1939175) - continued							
EM1815026-005	Anonymous	EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
EM1814939-013	Anonymous	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit

Page	: 4 of 9
Work Order	: EM1814966
Client	: COFFEY ENVIRONMENTS PTY LTD
Project	754-MELGE220504

Sub-Matrix: SOIL					Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP068A: Organochloi	rine Pesticides (OC) (QC Lo	rt: 1939175) - continued							
EM1814939-013	Anonymous	EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
EP075(SIM)B: Polynu	clear Aromatic Hydrocarbor	ns (QC Lot: 1939173)							
EM1815026-005	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EM1814939-013	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EP080/071: Total Petr	oleum Hydrocarbons (QC L	.ot: 1938554)							
EM1814939-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
EM1814951-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total Petr	oleum Hydrocarbons (QC L	.ot: 1939174)							

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080/071: Total Pe	etroleum Hydrocarbon	s (QC Lot: 1939174) - continued							
EM1815026-005	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit
EM1814939-013	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit
EP080/071: Total Re	ecoverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 1938554)							
EM1814939-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
EM1814951-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total Re	ecoverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 1939174)							
EM1815026-005	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
	EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit	
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit
EM1814939-013	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit
EP080: BTEXN (QC	Lot: 1938554)								
EM1814939-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit
EM1814951-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)				
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High				
EG005T: Total Metals by ICP-AES (QCLot: 1939063	3)											
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	94.8	78	107				
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	86.5	76	108				
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	93.2	78	110				
EG005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	88.0	78	108				
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	91.6	78	106				
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	94.7	80	109				
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	93.6	79	110				
EG035T: Total Recoverable Mercury by FIMS (QCLot: 1939064)												
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	88.7	77	104				
EP066: Polychlorinated Biphenyls (PCB) (QCLot: 1	EP066: Polychlorinated Biphenyls (PCB) (QCLot: 1939176)											
EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	1 mg/kg	79.7	63	115				
EP068A: Organochlorine Pesticides (OC) (QCLot:	EP068A: Organochlorine Pesticides (OC) (QCLot: 1939175)											
EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	98.7	65	120				
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	96.8	68	121				
EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	98.9	70	121				
EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	98.0	64	119				
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	98.6	56	121				
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	91.9	63	114				
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	103	64	121				
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	102	68	120				
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	100	72	124				
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	99.2	69	125				
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	103	71	123				
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	107	59	123				
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	103	70	123				
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	102	64	119				
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	103	69	124				
EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	103	66	128				
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	104	62	121				
EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	95.8	57	124				
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	91.8	60	124				
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	98.2	73	120				
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	90.2	61	121				
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	(QCLot: 1939173)											

Page : 7 of 9 Work Order : EM1814966 Client : COFFEY ENVIRONMENTS PTY LTD Project : 754-MELGE220504

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound CAS	Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 1939 [,]	173) - co	ntinued							
EP075(SIM): Naphthalene 9	1-20-3	0.5	mg/kg	<0.5	3 mg/kg	101	75	131	
EP075(SIM): Acenaphthylene 20	8-96-8	0.5	mg/kg	<0.5	3 mg/kg	93.1	70	132	
EP075(SIM): Acenaphthene 8	3-32-9	0.5	mg/kg	<0.5	3 mg/kg	105	80	128	
EP075(SIM): Fluorene 8	6-73-7	0.5	mg/kg	<0.5	3 mg/kg	98.3	70	128	
EP075(SIM): Phenanthrene 8	5-01-8	0.5	mg/kg	<0.5	3 mg/kg	106	80	128	
EP075(SIM): Anthracene 12	0-12-7	0.5	mg/kg	<0.5	3 mg/kg	110	72	126	
EP075(SIM): Fluoranthene 20	6-44-0	0.5	mg/kg	<0.5	3 mg/kg	110	70	128	
EP075(SIM): Pyrene 12	9-00-0	0.5	mg/kg	<0.5	3 mg/kg	117	80	125	
EP075(SIM): Benz(a)anthracene 5	6-55-3	0.5	mg/kg	<0.5	3 mg/kg	108	70	130	
EP075(SIM): Chrysene 21	8-01-9	0.5	mg/kg	<0.5	3 mg/kg	108	80	126	
EP075(SIM): Benzo(b+j)fluoranthene 20	5-99-2	0.5	mg/kg	<0.5	3 mg/kg	88.3	71	124	
20	5-82-3								
EP075(SIM): Benzo(k)fluoranthene 20	7-08-9	0.5	mg/kg	<0.5	3 mg/kg	96.4	75	125	
EP075(SIM): Benzo(a)pyrene 5	0-32-8	0.5	mg/kg	<0.5	3 mg/kg	83.6	70	125	
EP075(SIM): Indeno(1.2.3.cd)pyrene 19	3-39-5	0.5	mg/kg	<0.5	3 mg/kg	87.4	71	128	
EP075(SIM): Dibenz(a.h)anthracene 5	3-70-3	0.5	mg/kg	<0.5	3 mg/kg	94.8	72	126	
EP075(SIM): Benzo(g.h.i)perylene 19	1-24-2	0.5	mg/kg	<0.5	3 mg/kg	96.6	68	127	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 1938554)									
EP080: C6 - C9 Fraction		10	mg/kg	<10	36 mg/kg	87.0	70	127	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 1939174)									
EP071: C10 - C14 Fraction		50	mg/kg	<50	806 mg/kg	95.4	80	120	
EP071: C15 - C28 Fraction		100	mg/kg	<100	3006 mg/kg	101	84	115	
EP071: C29 - C36 Fraction		100	mg/kg	<100	1584 mg/kg	91.6	80	112	
EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50					
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractio	ns (QCL	ot: 1938554)							
EP080: C6 - C10 Fraction CI	6_C10	10	mg/kg	<10	45 mg/kg	87.4	68	125	
EP080/071: Total Recoverable Hvdrocarbons - NEPM 2013 Fractio	ns (QCL	ot: 1939174)							
EP071: >C10 - C16 Fraction		50	mg/kg	<50	1160 mg/kg	94.9	83	117	
EP071: >C16 - C34 Fraction		100	mg/kg	<100	3978 mg/kg	97.4	82	114	
EP071: >C34 - C40 Fraction		100	mg/kg	<100	313 mg/kg	88.2	73	115	
EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50					
EP080: BTEXN (QCLot: 1938554)									
EP080: Benzene 7	1-43-2	0.2	mg/kg	<0.2	2 mg/kg	83.5	74	124	
EP080: Toluene 10	8-88-3	0.5	mg/kg	<0.5	2 mg/kg	85.6	77	125	
EP080: Ethylbenzene 10	0-41-4	0.5	mg/kg	<0.5	2 mg/kg	88.6	73	125	
EP080: meta- & para-Xylene 10	8-38-3	0.5	mg/kg	<0.5	4 mg/kg	92.8	77	128	
10	6-42-3								
EP080: ortho-Xylene 9	5-47-6	0.5	mg/kg	<0.5	2 mg/kg	90.6	81	128	

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
					Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low High		
EP080: BTEXN (QCLot: 1938554) - continued									
EP080: Naphthalene	91-20-3	1	mg/kg	<1	0.5 mg/kg	90.9	66	130	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL		Matrix Spike (MS) Report										
				Spike	SpikeRecovery(%)	Recovery Li	nits (%)					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High					
EG005T: Total Met	als by ICP-AES (QCLot: 1939063)											
EM1814939-002	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	100	78	124					
		EG005T: Cadmium	7440-43-9	50 mg/kg	94.1	84	116					
		EG005T: Chromium	7440-47-3	50 mg/kg	92.2	79	121					
		EG005T: Copper	7440-50-8	50 mg/kg	95.1	82	124					
		EG005T: Lead	7439-92-1	50 mg/kg	104	76	124					
		EG005T: Nickel	7440-02-0	50 mg/kg	94.0	78	120					
		EG005T: Zinc	7440-66-6	50 mg/kg	104	74	128					
EG035T: Total Red	coverable Mercury by FIMS (QCLot: 1939064)											
EM1814939-002	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	97.5	76	116					
EP066: Polychlorin	P066: Polychlorinated Biphenyls (PCB) (QCLot: 1939176)											
EM1814939-032	Anonymous	EP066: Total Polychlorinated biphenyls		1 mg/kg	78.6	44	144					
EP068A: Organoch	lorine Pesticides (OC) (QCLot: 1939175)											
EM1814939-013	Anonymous	EP068: gamma-BHC	58-89-9	0.5 mg/kg	90.6	22	139					
		EP068: Heptachlor	76-44-8	0.5 mg/kg	87.0	18	130					
		EP068: Aldrin	309-00-2	0.5 mg/kg	92.5	23	136					
		EP068: Dieldrin	60-57-1	0.5 mg/kg	94.2	42	136					
		EP068: Endrin	72-20-8	0.5 mg/kg	99.8	23	146					
		EP068: 4.4'-DDT	50-29-3	0.5 mg/kg	43.6	20	133					
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 1939173)											
EM1814939-007	Anonymous	EP075(SIM): Acenaphthene	83-32-9	3 mg/kg	92.5	67	117					
		EP075(SIM): Pyrene	129-00-0	3 mg/kg	128	52	148					
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 1938554)											
EM1814939-007	Anonymous	EP080: C6 - C9 Fraction		28 mg/kg	44.7	42	131					
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 1939174)											
EM1814939-007	Anonymous	EP071: C10 - C14 Fraction		806 mg/kg	92.1	53	123					
		EP071: C15 - C28 Fraction		3006 mg/kg	99.3	70	124					
		EP071: C29 - C36 Fraction		1584 mg/kg	90.6	64	118					

Page	: 9 of 9
Work Order	: EM1814966
Client	: COFFEY ENVIRONMENTS PTY LTD
Project	: 754-MELGE220504

Sub-Matrix: SOIL			Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery Li	mits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions (QCL	ot: 1938554)					
EM1814939-007	Anonymous	EP080: C6 - C10 Fraction	C6_C10	33 mg/kg	45.7	39	129
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions (QCL						
EM1814939-007	Anonymous	EP071: >C10 - C16 Fraction		1160 mg/kg	92.7	65	123
		EP071: >C16 - C34 Fraction		3978 mg/kg	96.2	67	121
		EP071: >C34 - C40 Fraction		313 mg/kg	87.5	44	126
EP080: BTEXN (Q	CLot: 1938554)						
EM1814939-007	Anonymous	EP080: Benzene	71-43-2	2 mg/kg	54.0	50	136
		EP080: Toluene	108-88-3	2 mg/kg	57.3	56	139

Reference No.

8.0

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

				Consigning Offic	ce:							~							
cof	fev		-	Report Results t	Mobil	e:				Email: Mence Jones					@coffey.com				
TETRA TECH CO	OMPANY			Invoices to:				Phone	e:				Email	:			J		@coffey.com
Project No:	7-141-MILGE 22058	2) I	Fask No:	,20									Analysi	s Reque	st Se	ction			
Project Nar	ne: NON	l	aboratory:	EUROFIN	S					म									
Sampler's N	Name:	F	Project Mar	ager: SM	ON RAK.	EK				0									
Special Inst	ructions:			-						3									
							TAT	-+	C	5									
Lab No.	Sample ID		Sample Date	Time	(Soiletc)	Preservative*	(specify)	3	Q	ASIS		-						NOTES	<i></i>
	RH03 0.4	m	17/9		5	4	SVORY	V	V	V									
	13H 03 0.7	maj.On	1719				· ·	5	V										
			ð																(
						1													
																			,
									-										
							-											1	1 de
			<i>x</i> .	a a stati															
																-			/
								-											(1) =
1. 																			
							1												
													_						
17-11-																115	t a two		নাশ
	RELINQUI	SHED BY				1	RECEIVED BY	Y				Sa	mple R	eceipt A	dvice:	(Lab	Use Only)		
Name: Maunik Jones Date: 27/9/18 >				Name: S	UE		Date	2	7 0	2/18	A	l Sampl	es Reciev	ed in (Good	Condition			
Coffey Environments Time:				Company:	Company: Time: 2-40					10pm	A	l Docun	nentatior	n is in I	Prope	r Order			
Name: Date: →					Name: R	Phillips		Date	Date: 28.9.18				Samples Received Properly Chilled						
Company:		Time:			Company: 🕅	Company: Europines motor Time: 8:10am				La	b. Ref/I	Batch No		#6	20058				
*Containe	r Type & Preservation Codes: P - Pl	astic, G - Glass Bo	ttle, J - Glas	s Jar, V - Vial, Z	- Ziplock bag, I	N - Nitric Acid Preserv	red, C - Hydroch	loric Aci	id Pre	eserved	, s - Sulphur	ric		Ē					
Acid Prese	rved, I - Ice, ST - Sodium Thiosulfat	e, NP - No Preserv	/ative						-										-

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

web : www.eurofins.com.au

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521 e.n

e.mail : EnviroSales@eurofins.com

Sample Receipt Advice

Company name:

Coffey Environments P/L N'castle

Contact name:	Merrick Jones
Project name:	NBN - 120
Project ID:	7-H1-NTLGE220504
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	Sep 28, 2018 8:10 AM
Eurofins mgt reference:	620058

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- ☑ COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Andrew Black on Phone : (+61) 2 9900 8490 or by e.mail: AndrewBlack@eurofins.com

Results will be delivered electronically via e.mail to Merrick Jones - Merrick.Jones@coffey.com.

Environmental Laboratory N Air Analysis S Water Analysis T Soil Contamination Analysis C

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis Environmental Laboratories Industry Group

38 Years of Environmental Analysis & Experience

	😫 eur	ofins	møt						N 2 C	felbourne -5 Kingston Town Close Dakleigh VIC 3166	Sydney Unit F3, Building F 16 Mars Road	Brisbane 1/21 Smallwood Place Murarrie QLD 4172	Perth 2/91 Leach Highway Kewdale WA 6105
					ABN- 50 005 0 e.mail : Enviro)85 521 Sales@ ofins.cc	eurofins	.com	P N S	'hone : +61 3 8564 5000 IATA # 1261 Sto # 1254 & 14271	Lane Cove West NSW 2066 Phone : +61 2 9900 8400	Phone : +61 7 3902 4600 NATA # 1261 Site # 2079	Phone : +61 8 9251 9600 4 NATA # 1261 Site # 23736
					web . www.eui	UIIIIS.CC	ini.au		3	nie # 1234 & 1427 1	INATA # 1201 Sile # 10217		Sile # 25/30
Co Ad	mpany Name: dress:	Coffey Enviro Lot 101, 19 V Warabrook NSW 2304	onments P/L N Varabrook Bo	V'castle ulevard			Ore Re Ph Fa	der Ne port # one: x:	0.: #:	620058 02 4016 2300 02 4016 2380		Received: Due: Priority: Contact Name:	Sep 28, 2018 8:10 AM Oct 8, 2018 5 Day Merrick Jones
Pro Pro	oject Name: oject ID:	NBN - 120 7-H1-NTLGE	220504								Eurofin	s mgt Analytical Serv	rices Manager : Andrew Black
		Sa	mple Detail			Asbestos - AS4964	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7				
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	:71						-			
Sydn	ey Laboratory		8217			X	X	Х	Х	-			
Brisbane Laboratory - NATA Site # 20794										4			
Exte	rnal Laboratory		50							-			
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	BH03 0.4M	Sep 17, 2018		Soil	S18-Se37046	Х	х	х	Х]			
2	BH03 0.7-1.0M	Sep 17, 2018		Soil	S18-Se37047	Х	х	х	Х				
Test	Counts					2	2	2	2				

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Coffey Environments Pty Ltd Newcastle Lot 101, 19 Warabrook Boulevard Warabrook NSW 2304

Attention: Report Project Name Project ID Received Date Date Reported	Merrick Jones 620058-AID NBN - 120 7-H1-NTLGE220504 Sep 28, 2018 Oct 08, 2018
Methodology: Asbestos Fibre Identification	Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.
Unknown Mineral Fibres	Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity. NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.
Subsampling Soil Samples	The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) is employed. NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.
Bonded asbestos- containing material (ACM)	The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.
Limit of Reporting	The performance limitation of the AS4964 method for inhomogeneous samples is around 0.1 g/kg (0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis where required, this is considered to be at the nominal reporting limit of 0.01% (w / w). The examination of large sample sizes(500 mL is recommended) may improve the likelihood of identifying ACM in the > 2mm fraction. The NEPM screening level of 0.001% (w / w) asbestos in soil for FA(friable asbestos) and AF(asbestos fines) then applies where they are able to be quantified by gravimetric procedures. This quantitative screening is not generally applicable to FF(free fibres) and results of Trace Analysis are referred. NOTE: NATA News March 2014, p.7, states in relation to AS4964: "This is a qualitative method with a nominal reporting limit of 0.01%" and that currently in Australia "there is no validated method available for the quantification of asbestos". Accordingly, NATA Accreditation does not cover the performance of this service (indicated with an asterisk). This report is consistent with the analytical procedures and reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended) and the Western Australia, 2009, including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil, June 2011.

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

 Project Name
 NBN - 120

 Project ID
 7-H1-NTLGE220504

 Date Sampled
 Sep 17, 2018

 Report
 620058-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
BH03 0.4M	18-Se37046	Sep 17, 2018	Approximate Sample 65g Sample consisted of: Tan fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
BH03 0.7-1.0M	18-Se37047	Sep 17, 2018	Approximate Sample 63g Sample consisted of: Beige fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Asbestos - LTM-ASB-8020 Testing SiteExtractedHolding TimeSydneySep 28, 2018Indefinite

	euro	ofins	mgt			ABN – e.mail : web : w	50 005 Enviros /ww.eur	085 52 Sales@ ofins.cc	l eurofin: om.au	Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 500 S.com NATA # 1261 Site # 1254 & 14271	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 20 Phone : +61 2 9900 8400 NATA # 1261 Site # 1821	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 66 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 7	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736
Company Name: Coffey Environments P/L N'castle Address: Lot 101, 19 Warabrook Boulevard Warabrook NSW 2304						Or Re Ph Fa	der N eport a ione: x:	o.: #:	620058 02 4016 2300 02 4016 2380	Rece Due: Prior Cont	ived: Sep 28, Oct 8, 2 ity: 5 Day act Name: Merrick	2018 8:10 AM 018 Jones	
Pro	oject ID:	7-H1-NTLGE	220504								Eurofins mg	Analytical Services Ma	nager : Andrew Black
Moli		Sa	mple Detail	74		Asbestos - AS4964	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7				
Svd	nev Laboratory ·	• NATA Site # 1	<u># 1254 & 142</u> 8217	.7.1		х	x	x	х				
Bris	bane Laboratory	/ - NATA Site #	20794										
Perth Laboratory - NATA Site # 23736													
Exte	ernal Laboratory			1	1								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	BH03 0.4M	Sep 17, 2018		Soil	S18-Se37046	Х	х	Х	Х				
2	BH03 0.7-1.0M	Sep 17, 2018		Soil	S18-Se37047	х	х	х	Х				
Test	Counts					2	2	2	2				

Internal Quality Control Review and Glossary General

1. QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

Holding Times

Units

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

mgt

% w/w: weight for weight b	pasis	grams per kilogram
Filter loading:	f	fibres/100 graticule areas
Reported Concentration:	f	fibres/mL
Flowrate:	1	L/min
Terms		
Dry	Where a moisture has been determined on a solid sample the result is	is expressed on a dry basis
LOR	Limit of Reporting	
COC	Chain of Custody	
SRA	Sample Receipt Advice	
ISO	International Standards Organisation	
AS	Australian Standards	
WA DOH	Western Australia Department of Health	
NOHSC	National Occupational Health and Safety Commission	
ACM	Bonded asbestos-containing material means any material containing although possibly broken or fragmented, and where the asbestos is b to: pipe and boiler insulation, sprayed-on fireproofing, troweled-on acc ceiling plaster, ceiling tiles, and gasket materials. This term is restricte approximates the thickness of common asbestos cement sheeting an for fibre release.	more than 1% asbestos and comprises asbestos-containing-material which is in sound condition, bound in a matrix such as cement or resin. Common examples of ACM include but are not limited oustical plaster, floor tile and mastic, floor linoleum, transite shingles, roofing materials, wall and ed to material that cannot pass a 7 mm x 7 mm sieve. This sieve size is selected because it and for fragments to be smaller than this would imply a high degree of damage and hence potential
FA	FA comprises friable asbestos material and includes severely weathe is defined here as asbestos material that is in a degraded condition su was previously bonded and is now significantly degraded (crumbling).	ared cement sheet, insulation products and woven asbestos material. This type of friable asbestos uch that it can be broken or crumbled by hand pressure. This material is typically unbonded or
PACM	Presumed Asbestos-Containing Material means thermal system insul than 1980 that are assumed to contain greater than one percent asbe	lation and surfacing material found in buildings, vessels, and vessel sections constructed no later estos but have not been sampled or analyzed to verify or negate the presence of asbestos.
AF	Asbestos fines (AF) are defined as free fibres, or fibre bundles, small small fibres (< 5 microns in length) are not considered to be such a ris (Note that for bonded ACM fragments to pass through a 7 mm x 7 mm	er than 7mm. It is the free fibres which present the greatest risk to human health, although very sk. AF also includes small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve. m sieve implies a substatntial degree of damage which increases the potential for fibre release.)
AC	Asbestos cement means a mixture of cement and asbestos fibres (type)	pically 90:10 ratios).

Comments

The samples received were not collected in an approved asbestos bag and was therefore sub-sampled from the 250mL glass jar. Valid subsampling procedures were applied so as to ensure that the sub-samples to be analysed accurately represented the samples received.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description N/A Not applicable

Asbestos Counter/Identifier:

Karthik Surisetty

Senior Analyst-Asbestos (NSW)

Authorised by:

Sayeed Abu

Senior Analyst-Asbestos (NSW)

Glenn Jackson National Operations Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | rigit shall not be liable for loss, coss, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | rigit be liable for coss, coss, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofins | rigit be liable for the samples as received.

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Coffey Environments Pty Ltd Newcastle Lot 101, 19 Warabrook Boulevard Warabrook NSW 2304

Attention:	Simon Baker
Report	618016-AID
Project Name	NBN DEVELOPMENT
Project ID	754-MLGE220504
Received Date	Sep 17, 2018
Date Reported	Sep 24, 2018
Methodology:	
Asbestos Fibre Identification	Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.
Unknown Mineral Fibres	Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity. NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.
Subsampling Soil Samples	The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) is employed. NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.
Bonded asbestos- containing material (ACM)	The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.
Limit of Reporting	The performance limitation of the AS4964 method for inhomogeneous samples is around 0.1 g/kg (0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis where required, this is considered to be at the nominal reporting limit of 0.01% (w / w). The examination of large sample sizes(500 mL is recommended) may improve the likelihood of identifying ACM in the > 2mm fraction. The NEPM screening level of 0.001% (w / w) asbestos in soil for FA(friable asbestos) and AF(asbestos fines) then applies where they are able to be quantified by gravimetric procedures. This quantitative screening is not generally applicable to FF(free fibres) and results of Trace Analysis are referred. NOTE: NATA News March 2014, p.7, states in relation to AS4964: "This is a qualitative method with a nominal reporting limit of 0.01%" and that currently in Australia "there is no validated method available for the quantification of asbestos". Accordingly, NATA Accreditation does not cover the performance of this service (indicated with an asterisk). This report is consistent with the analytical procedures and reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended) and the Western Australia, 2009, including

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project NameNBN DEVELOPMENTProject ID754-MLGE220504Date SampledSep 03, 2018 to Sep 12, 2018Report618016-AID

mgt

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
BH02 0.5	18-Se21256	Sep 10, 2018	Approximate Sample 429g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
BH04 0.5	18-Se21257	Sep 12, 2018	Approximate Sample 474g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
BH01 1.5	18-Se21260	Sep 03, 2018	Approximate Sample 303g Sample consisted of: Light brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
QC3	18-Se21261	Sep 03, 2018	Approximate Sample 70g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Asbestos - LTM-ASB-8020 Testing SiteExtractedHolding TimeSydneySep 17, 2018Indefinite

🔅 eurofins mgt						ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au				Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 com NATA # 1261 Site # 1254 & 14271	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736
Company Name: Coffey Environments P/L N'castle Address: Lot 101, 19 Warabrook Boulevard Warabrook NSW 2304						Order No.: Report #: 618 Phone: 02 Fax: 02			o.: #:	618016 02 4016 2300 02 4016 2380	Receive Due: Priority Contac	ed: Sep 17 Sep 24 : 5 Day : Name: Simon	, 2018 8:09 AM , 2018 Baker
Project Name:NBN DEVELOPMENTProject ID:754-MLGE220504										Eurofins mgt A	nalytical Services Ma	anager : Andrew Black	
Sample Detail					Asbestos - AS4964	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7					
Melbourne Laboratory - NATA Site # 1254 & 14271							Х	Х	Х				
Sydney Laboratory - NATA Site # 18217													
Bris	bane Laborator	y - NATA Site #	20794										
Pert	h Laboratory - N	NATA Site # 237	36										
Exte	Sample ID	Sample Date	Sampling	Matrix									
	Sample ID		Time	Watita									
1	BH01 0.5	Sep 03, 2018		Soil	M18-Se21253		Х	X	X				
2	BH01 1.0	Sep 03, 2018		Soil	M18-Se21254			X	Х				
3	BH02 0.1	Sep 10, 2018		Soil	M18-Se21255			X	Х				
4	BH02 0.5	Sep 10, 2018		Soil	M18-Se21256	X	X	X	X				
5	BH04 0.5	Sep 12, 2018		Soil	M18-Se21257	X	X	X	X				
6	BH04 1.0	Sep 12, 2018		Soil	M18-Se21258			X	X				
7	BH04 3.0	Sep 12, 2018		Soil	M18-Se21259			X	X				
8	BH01 1.5	Sep 03, 2018		Soil	M18-Se21260	X							
9	IQC3	Sep 03, 2018		Sol	M18-Se21261	Х	Х	X	Х				

🔅 euro	ofins mgt	ABN – e.mail web∶v	- 50 005 : Enviro www.eu	085 52 Sales@ rofins.cc	eurofins. m.au	Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736
Company Name: Address:	Company Name: Coffey Environments P/L N'castle Address: Lot 101, 19 Warabrook Boulevard Warabrook NSW 2304		Order No.: Report #: Phone: Fax:			618016 02 4016 2300 02 4016 2380	Received:Sep 17, 2018 8:09 AMDue:Sep 24, 2018Priority:5 DayContact Name:Simon Baker		
Project Name:NBN DEVELOPMENTProject ID:754-MLGE220504							Eurofins mgt A	nalytical Services Mar	ager : Andrew Black
	Sample Detail	Asbestos - AS4964	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7				
Melbourne Laborato	ory - NATA Site # 1254 & 14271		Х	Х	Х				
Sydney Laboratory - NATA Site # 18217									
Brisbane Laboratory - NATA Site # 20794									
Perth Laboratory - N	IATA Site # 23736								
Test Counts		4	4	8	8				

Internal Quality Control Review and Glossary General

1. QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

Holding Times

Units

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

mgt

% w/w: weight for weight b	pasis	grams per kilogram			
Filter loading:	f	fibres/100 graticule areas			
Reported Concentration:	f	fibres/mL			
Flowrate:		L/min			
Terms					
Dry	Where a moisture has been determined on a solid sample the result i	is expressed on a dry basis			
LOR	Limit of Reporting				
COC	Chain of Custody				
SRA	Sample Receipt Advice				
ISO	International Standards Organisation				
AS	Australian Standards				
WA DOH	Western Australia Department of Health				
NOHSC	National Occupational Health and Safety Commission				
ACM	Bonded asbestos-containing material means any material containing although possibly broken or fragmented, and where the asbestos is b to: pipe and boiler insulation, sprayed-on fireproofing, troweled-on ac ceiling plaster, ceiling tiles, and gasket materials. This term is restrict approximates the thickness of common asbestos cement sheeting an for fibre release.	more than 1% asbestos and comprises asbestos-containing-material which is in sound condition, bound in a matrix such as cement or resin. Common examples of ACM include but are not limited oustical plaster, floor tile and mastic, floor linoleum, transite shingles, roofing materials, wall and ed to material that cannot pass a 7 mm x 7 mm sieve. This sieve size is selected because it and for fragments to be smaller than this would imply a high degree of damage and hence potential			
FA	FA comprises friable asbestos material and includes severely weather is defined here as asbestos material that is in a degraded condition s was previously bonded and is now significantly degraded (crumbling)	ared cement sheet, insulation products and woven asbestos material. This type of friable asbestos uch that it can be broken or crumbled by hand pressure. This material is typically unbonded or			
PACM	Presumed Asbestos-Containing Material means thermal system insul than 1980 that are assumed to contain greater than one percent asbe	lation and surfacing material found in buildings, vessels, and vessel sections constructed no later estos but have not been sampled or analyzed to verify or negate the presence of asbestos.			
AF	Asbestos fines (AF) are defined as free fibres, or fibre bundles, small small fibres (< 5 microns in length) are not considered to be such a ris (Note that for bonded ACM fragments to pass through a 7 mm x 7 mr	er than 7mm. It is the free fibres which present the greatest risk to human health, although very sk. AF also includes small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve. m sieve implies a substatntial degree of damage which increases the potential for fibre release.)			
AC	Asbestos cement means a mixture of cement and asbestos fibres (type)	pically 90:10 ratios).			

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
N/A	Not applicable

Asbestos Counter/Identifier:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Authorised by:

Laxman Dias

Senior Analyst-Asbestos (NSW)

Glenn Jackson National Operations Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

Coffey Environments Pty Ltd Newcastle Lot 101, 19 Warabrook Boulevard Warabrook NSW 2304

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Simon Baker

Report Project name Project ID Received Date 618016-S NBN DEVELOPMENT 754-MLGE220504 Sep 17, 2018

Client Sample ID			BH01 0 5	BH01 1 0	BH02 0 1	BH02.0.5
Sample Matrix			Soil	Soil	Soil	Soil
Furofins I mat Sample No			M18-Se21253	M18-Se21254	M18-Se21255	M18-Se21256
Date Sampled			Son 03, 2018	Son 03 2018	Son 10, 2018	Son 10, 2018
	105		Sep 03, 2018	Sep 03, 2018	Sep 10, 2018	Sep 10, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	78	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	690	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	768	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	94	87	92	89
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	520	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	1000	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	1520	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	1.2	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	1.4	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.7	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	0.6	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	0.9	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	0.7	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	0.7	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	0.9	< 0.5	< 0.5

Client Sample ID			BH01 0.5	BH01 1.0	BH02 0.1	BH02 0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins I mgt Sample No.			M18-Se21253	M18-Se21254	M18-Se21255	M18-Se21256
Date Sampled			Sep 03, 2018	Sep 03, 2018	Sep 10, 2018	Sep 10, 2018
		Linit	000 00, 2010	000 00, 2010	000 10, 2010	000 10, 2010
Polycyclic Aromatic Hydrocarbons	LOK	Unit				
	0.5	ma/ka	- 0.5	- 0.5	- 0.5	< 0.5
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
	0.5	mg/kg	0.7	1.9	< 0.5	< 0.5
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalana	0.5	mg/kg	< 0.5	0.5	< 0.5	< 0.5
Phononthrono	0.5	mg/kg	< 0.5	0.7	< 0.5	< 0.5
Pyropo	0.5	mg/kg	< 0.5 0.6	1.5	< 0.5	< 0.5
	0.5	mg/kg	1.2	1.5	< 0.5	< 0.5
2 Elucrobiohoovel (curr.)	0.5	0/.	1.5	101	101	< 0.5 00
p-Terphenyl-d14 (surr.)	1	70 0/_	107	101	101	113
Organochlorine Pesticides	1	70	107	100	102	110
Chlordanos Total	0.1	ma/ka	- 0.1			< 0.1
	0.1	mg/kg	< 0.05	-	-	< 0.1
	0.05	mg/kg	< 0.05	-	-	< 0.05
	0.05	mg/kg	< 0.05	-	-	< 0.05
4.4-001 2-BHC	0.05	mg/kg	< 0.05			< 0.05
	0.05	mg/kg	< 0.05	-	-	< 0.05
	0.05	mg/kg	< 0.05	-	-	< 0.05
	0.05	mg/kg	< 0.05	-	-	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	-		< 0.05
	0.05	ma/ka	< 0.05			< 0.05
	0.05	ma/ka	< 0.05			< 0.05
	0.05	mg/kg	< 0.05	-		< 0.05
Endrin	0.05	ma/ka	< 0.05			< 0.05
Endrin aldebyde	0.05	ma/ka	< 0.05	_		< 0.05
Endrin ketone	0.05	ma/ka	< 0.05	_	_	< 0.05
g-BHC (Lindane)	0.05	ma/ka	< 0.05	_	_	< 0.05
Hentachlor	0.05	ma/ka	< 0.05	_	_	< 0.05
Hentachlor enoxide	0.05	ma/ka	< 0.05	_	_	< 0.05
Hexachlorobenzene	0.05	ma/ka	< 0.05	_	_	< 0.05
Methoxychlor	0.05	ma/ka	< 0.05	-	-	< 0.05
Toxaphene	1	ma/ka	< 1	-	-	< 1
Aldrin and Dieldrin (Total)*	0.05	ma/ka	< 0.05	-	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	ma/ka	< 0.05	-	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	ma/ka	< 0.1	-	-	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	-	< 0.1
Dibutvlchlorendate (surr.)	1	%	75	-	-	143
Tetrachloro-m-xylene (surr.)	1	%	127	-	-	128
Polychlorinated Biphenyls						
Aroclor-1016	0.1	ma/ka	< 0.1	-	-	< 0.1
Aroclor-1221	0.1	ma/ka	< 0.1	-	-	< 0.1
Aroclor-1232	0.1	ma/ka	< 0.1	-	-	< 0.1
Aroclor-1242	0.1	ma/ka	< 0.1	-	-	< 0.1
Aroclor-1248	0.1	ma/ka	< 0.1	-	-	< 0.1
Aroclor-1254	0.1	mg/ka	< 0.1	-	-	< 0.1
Aroclor-1260	0.1	mg/ka	< 0.1	-	-	< 0.1
Total PCB*	0.1	mg/ka	< 0.1	-	-	< 0.1
Dibutylchlorendate (surr.)	1	%	75	-	-	143
Tetrachloro-m-xylene (surr.)	1	%	127	-	-	128

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			BH01 0.5 Soil M18-Se21253 Sep 03, 2018	BH01 1.0 Soil M18-Se21254 Sep 03, 2018	BH02 0.1 Soil M18-Se21255 Sep 10, 2018	BH02 0.5 Soil M18-Se21256 Sep 10, 2018
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	12	8.6	6.1	10.0
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	13	14	16	12
Copper	5	mg/kg	16	18	13	16
Lead	5	mg/kg	57	66	23	29
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	5.1	< 5
Zinc	5	mg/kg	52	79	59	27
% Moisture	1	%	16	18	8.1	19

Client Sample ID			BH04 0.5	BH04 1.0	BH04 3.0	QC3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M18-Se21257	M18-Se21258	M18-Se21259	M18-Se21261
Date Sampled			Sep 12, 2018	Sep 12, 2018	Sep 12, 2018	Sep 03, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	62	90	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	70	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	62	160	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	98	97	105	83
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	130	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	130	< 100	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	1.8	1.6	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	2.1	1.8	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	2.3	2.1	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	1.3	1.1	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	1.4	1.2	< 0.5	< 0.5

Sample Matrix Formation of the second of the s	Client Sample ID			BH04 0.5	BH04 1.0	BH04 3.0	QC3	
EuroImp Ign Sample No. Image Name <thimage name<="" th=""> Image Name</thimage>	Sample Matrix			Soil	Soil	Soil	Soil	
Date Sampled Lor Sep 12, 2018 Sep 12, 2018 Sep 23, 2018 Test/Returnoe Lori International Constructin	Eurofins mgt Sample No.			M18-Se21257	M18-Se21258	M18-Se21259	M18-Se21261	
TestReference LOR Unit Image: Construct of the second	Date Sampled			Sep 12, 2018	Sep 12, 2018	Sep 12, 2018	Sep 03, 2018	
Polycyclic Aromatic Hydrocarbons Image of the second	Test/Reference	LOR	Unit	,	,	,		
Benzolb 8)/fuoranthene ¹⁰⁰ 0.5 mg/kg 1.0 0.9 < 0.5 < < 0.5 Benzolb 8)/fuoranthene 0.5 mg/kg 1.0 0.9 < 0.5	Polycyclic Aromatic Hydrocarbons	Lon	Offic					
Benzolg h.ijperylene 0.5 mg/kg 0.8 0.9 < 0.5 < < 0.5 Benzolg h.ijperylene 0.5 mg/kg 1.0 0.9 < < 0.5	Benzo(b&i)fluoranthene ^{N07}	0.5	ma/ka	1.0	0.9	< 0.5	< 0.5	
Banzolk/likonanthene 0.5 mg/kg 1.0 0.9 < 0.5 < < 0.5 Chryseire 0.5 mg/kg 1.2 1.0 < < 0.5	Benzo(a,h,i)pervlene	0.5	ma/ka	0.8	0.9	< 0.5	< 0.5	
Chrysene 0.5 mg/kg 1.2 1.0 < 0.5 < 0.5 Dibenz(ah)anthracene 0.5 mg/kg < 3.3	Benzo(k)fluoranthene	0.5	ma/ka	1.0	0.9	< 0.5	< 0.5	
Dibenz(a.h)anthracene 0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <td>Chrysene</td> <td>0.5</td> <td>ma/ka</td> <td>1.2</td> <td>1.0</td> <td>< 0.5</td> <td>< 0.5</td>	Chrysene	0.5	ma/ka	1.2	1.0	< 0.5	< 0.5	
Fluorenhene 0.5 mg/kg 3.3 2.8 <0.5 <0.5 Fluorene 0.5 mg/kg <0.7	Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Fuorene 0.5 mg/kg < 0.5 mg/kg < 0.5 mg/kg < 0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <th< td=""><td>Fluoranthene</td><td>0.5</td><td>mg/kg</td><td>3.3</td><td>2.8</td><td>< 0.5</td><td>< 0.5</td></th<>	Fluoranthene	0.5	mg/kg	3.3	2.8	< 0.5	< 0.5	
Indemol1.2.3-cdjpyrene 0.5 mg/kg 0.7 0.6 < 0.5 < 0.5 Naphthalene 0.5 mg/kg 2.6.5 < 0.5	Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Naphthalene 0.5 mg/kg < 0.5 1.6 1.3 < 0.5 < 0.5 Phenenthrene 0.5 mg/kg 1.6 1.3 < 0.5	Indeno(1.2.3-cd)pyrene	0.5	mg/kg	0.7	0.6	< 0.5	< 0.5	
Phenamitrene 0.5 mg/kg 1.6 1.3 < 0.5 < < 0.5 Pyrene 0.5 mg/kg 15.6 13.1 < < 0.5	Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Pyrene 0.5 mg/kg 2.8 2.4 < 0.5 < < 0.5 Total PAH' 0.5 mg/kg 15.6 13.1 < 0.5	Phenanthrene	0.5	mg/kg	1.6	1.3	< 0.5	< 0.5	
Total PAH* 0.5 mg/kg 15.6 13.1 < 0.5 < 0.5 2-Fluorobiphenyl (surr.) 1 % 93 84 92 88 D'Egrobenyl-414 (surr.) 1 % 93 87 99 96 Organcothorine Pesticides 0.1 mg/kg <0.1	Pyrene	0.5	mg/kg	2.8	2.4	< 0.5	< 0.5	
2-Fluorobiphenyl (surr.) 1 % 93 84 92 88 p-Terphenyl-d14 (surr.) 1 % 91 87 99 96 Organochiorine Pesticides	Total PAH*	0.5	mg/kg	15.6	13.1	< 0.5	< 0.5	
p-TephenyLd14 (sur.) 1 % 91 87 99 96 Organochlorine Pesticides Cholordanes - Total 0.1 mg/kg < 0.1 < 0.05 4.4'DDD 0.05 mg/kg < 0.05 < 0.05 4.4'DDT 0.0.5 mg/kg < 0.05 < 0.05 aBHC 0.05 mg/kg < 0.05 < 0.05 Alfin 0.05 mg/kg < 0.05 < 0.05 Alfin 0.05 mg/kg < 0.05 < 0.05 Alfin 0.05 mg/kg < 0.05 < 0.05 BHC 0.05 mg/kg < 0.05 < 0.05 BHC 0.05 mg/kg < 0.05 < 0.05 BHC 0.05 mg/kg < 0.05 < 0.05 BHC 0.05 mg/kg < 0.05 < 0.05 BHC 0.05 mg/kg < 0.05 < 0.05 BHC 0.05 mg/kg < 0.05 < 0.05 BHC 0.05 mg/kg < 0.05 < 0.05 BHC 0.05 mg/kg < 0.05 < 0.05 BHC 0.05 mg/kg < 0.05 < 0.05 Bedosulfan I 0.05 mg/kg < 0.05 < 0.05 Endosulfan I 0.05 mg/kg < 0.05 < 0.05 Endosulfan II 0.05 mg/kg < 0.05 < 0.05 Endosulfan II 0.05 mg/kg < 0.05 < 0.05 Endosulfan II 0.05 mg/kg < 0.05 < 0.05 Endosulfan II 0.05 mg/kg < 0.05 < 0.05 Endosulfan II 0.05 mg/kg < 0.05 < 0.05 Endosulfan II 0.05 mg/kg < 0.05 < 0.05 Endosulfan II 0.05 mg/kg < 0.05 < 0.05 Endosulfan II 0.05 mg/kg < 0.05 < 0.05 Endosulfan II 0.05 mg/kg < 0.05 < 0.05 Endrin aldehyde 0.05 mg/kg < 0.05 < 0.05 Endrin aldehyde 0.05 mg/kg < 0.05 < 0.05 Endrin ketone 0.05 mg/kg < 0.05 < 0.05 Heptachlor exotide 0.05 mg/kg < 0.05 < 0.05 Heptachlor exotide 0.05 mg/kg < 0.05 < 0.05 Methoxychlor 0.05 mg/kg < 0.05 < 0.05 Methoxychlor 0.05 mg/kg < 0.05 < 0.05 Methoxychlor 0.05 mg/kg < 0.05 < 0.05 Methoxychlor 0.05 mg/kg < 0.05 < 0.05 Methoxychlor 0.05 mg/kg < 0.05 < 0.05 Methoxychlor 0.05 mg/kg < 0.05 < 0.05 Methoxychlor 0.05 mg/kg < 0.05 < 0.05 DDT + DDE + DDD (Tota)* 0.1 mg/kg < 0.1 < 0.1 Motol	2-Fluorobiphenyl (surr.)	1	%	93	84	92	88	
Organochlorine Pesticides mg/kg <.0.1 mg/kg <.0.1 - < < Chiordanes - Total 0.1 mg/kg <.0.6	p-Terphenyl-d14 (surr.)	1	%	91	87	99	96	
Chlordanes - Total 0.1 mg/kg < 0.1 - < < 0.1 4.4'-DDD 0.05 mg/kg < 0.05	Organochlorine Pesticides							
4.4'DDD 0.05 mg/kg < 0.05	Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	< 0.1	
4.4'-DDE 0.05 mg/kg < 0.05	4.4'-DDD	0.05	mg/kg	< 0.05	-	-	< 0.05	
4.4'-DDT 0.05 mg/kg < 0.05	4.4'-DDE	0.05	mg/kg	< 0.05	-	-	< 0.05	
a-BHC 0.05 mg/kg < 0.05 < < 0.05 Aldrin 0.05 mg/kg < 0.05	4.4'-DDT	0.05	mg/kg	< 0.05	-	-	< 0.05	
Aldrin 0.05 mg/kg < 0.05	a-BHC	0.05	mg/kg	< 0.05	-	-	< 0.05	
b-BHC 0.05 mg/kg < 0.05 - - < 0.05 d-BHC 0.05 mg/kg < 0.05	Aldrin	0.05	mg/kg	< 0.05	-	-	< 0.05	
d-BHC 0.05 mg/kg < 0.05 - - < 0.05 Dieldrin 0.05 mg/kg < 0.05	b-BHC	0.05	mg/kg	< 0.05	-	-	< 0.05	
Dieldrin 0.05 mg/kg < 0.05 - < 0.05 Endosulfan I 0.06 mg/kg < 0.05	d-BHC	0.05	mg/kg	< 0.05	-	-	< 0.05	
Endosulfan I 0.05 mg/kg < 0.05 - - < 0.05 Endosulfan II 0.05 mg/kg < 0.05	Dieldrin	0.05	mg/kg	< 0.05	-	-	< 0.05	
Endosulfan II 0.05 mg/kg < 0.05 - - < 0.05 Endosulfan sulphate 0.05 mg/kg < 0.05	Endosulfan I	0.05	mg/kg	< 0.05	-	-	< 0.05	
Endosulfan sulphate 0.05 mg/kg < 0.05	< < < < < < < < < < < < < < < < < < <	Endosulfan II	0.05	mg/kg	< 0.05	-	-	< 0.05
Endrin 0.05 mg/kg < 0.05 $ < 0.05$ Endrin aldehyde 0.05 mg/kg < 0.05 $ < 0.05$ Endrin ketone 0.05 mg/kg < 0.05 $ < 0.05$ g-BHC (Lindane) 0.05 mg/kg < 0.05 $ < 0.05$ Heptachlor 0.05 mg/kg < 0.05 $ < 0.05$ Heptachlor epoxide 0.05 mg/kg < 0.05 $ < 0.05$ Heptachlor poxide 0.05 mg/kg < 0.05 $ < 0.05$ Hexachlorobenzene 0.05 mg/kg < 0.05 $ < 0.05$ Methoxychlor 0.05 mg/kg < 0.05 $ < 0.05$ Toxaphene 1 mg/kg < 0.05 $ < 0.05$ DDT + DDE + DDD (Total)* 0.05 mg/kg < 0.05 $ < 0.05$ Vic EPA IWRG 621 OCP (Total)* 0.1 mg/kg < 0.1 $ < $	Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	< 0.05	
Endrin aldehyde 0.05 mg/kg < 0.05 $ < 0.05$ Endrin ketone 0.05 mg/kg < 0.05 $ < 0.05$ g-BHC (Lindane) 0.05 mg/kg < 0.05 $ < 0.05$ Heptachlor 0.05 mg/kg < 0.05 $ < 0.05$ Heptachlor epoxide 0.05 mg/kg < 0.05 $ < 0.05$ Hestachlorobenzene 0.05 mg/kg < 0.05 $ < 0.05$ Methoxychlor 0.05 mg/kg < 0.05 $ < 0.05$ Toxaphene 1 mg/kg < 1 $ < 0.05$ DDT + DDE + DDD (Total)* 0.05 mg/kg < 0.05 $ < 0.05$ DT + DDE + DDD (Total)* 0.1 mg/kg < 0.1 $ < 0.1$ Vic EPA IWRG 621 Other OCP (Total)* 0.1 mg/kg < 0.1 $ < 0.1$ Dibutylchlorendate (surr.) 1 $\%$ 88 $ 90$ Polychlorinated Biphenyls $0.$	Endrin	0.05	mg/kg	< 0.05	-	-	< 0.05	
Endrin ketone 0.05 mg/kg < 0.05 $ < 0.05$ g-BHC (Lindane) 0.05 mg/kg < 0.05 $ < 0.05$ Heptachlor 0.05 mg/kg < 0.05 $ < 0.05$ Heptachlor epoxide 0.05 mg/kg < 0.05 $ < 0.05$ Hexachlorobenzene 0.05 mg/kg < 0.05 $ < 0.05$ Methoxychlor 0.05 mg/kg < 0.05 $ < 0.05$ Toxaphene 1 mg/kg < 1 $ < 0.05$ DDT + DDE + DDD (Total)* 0.05 mg/kg < 0.05 $ < 0.05$ Vic EPA IWRG 621 OCP (Total)* 0.1 mg/kg < 0.1 $ < 0.1$ Dibutylchlorendate (surr.) 1 $\%$ 106 $ 90$ Polychlorinated Biphenyls 0.1 mg/kg < 0.1 $ < 0.1$ Arcolor-1221 0.1 mg/kg < 0.1 </td <td>Endrin aldehyde</td> <td>0.05</td> <td>mg/kg</td> <td>< 0.05</td> <td>-</td> <td>-</td> <td>< 0.05</td>	Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	< 0.05	
g-BHC (Lindane) 0.05 mg/kg < 0.05	Endrin ketone	0.05	mg/kg	< 0.05	-	-	< 0.05	
Heptachlor 0.05 mg/kg < 0.05	g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	-	< 0.05	
Heptachlor epoxide 0.05 mg/kg < 0.05 $ < 0.05$ Hexachlorobenzene 0.05 mg/kg < 0.05 $ < 0.05$ Methoxychlor 0.05 mg/kg < 0.05 $ < 0.05$ Toxaphene 1 mg/kg < 0.05 $ < 0.05$ Aldrin and Dieldrin (Total)* 0.05 mg/kg < 0.05 $ < 0.05$ DDT + DDE + DDD (Total)* 0.05 mg/kg < 0.05 $ < 0.05$ DT + DDE + DDD (Total)* 0.11 mg/kg < 0.1 $ < 0.15$ Vic EPA IWRG 621 OCP (Total)* 0.11 mg/kg < 0.1 $ < 0.1$ Dibutylchlorendate (surr.) 1 $\%$ 106 $ 90$ Polychlorinated Biphenyls $ 1$ $\%$ 88 $ 90$ Aroclor-1221 0.1 mg/kg < 0.1 $ < 0.1$ $ < 0.1$ Aroclor-1232 0.1 mg/kg < 0.1 $ < 0.1$	Heptachlor	0.05	mg/kg	< 0.05	-	-	< 0.05	
Hexachlorobenzene 0.05 mg/kg < 0.05 - - < 0.05 Methoxychlor 0.05 mg/kg < 0.05	Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	< 0.05	
Methoxychior 0.05 mg/kg < 0.05 - - < 0.05 - < 0.05 - < 0.05 - < 0.05 - < 1 mg/kg < 1 - < 1 < 1 < 1 < 1 mg/kg < 1 . < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 0.05 mg/kg < 0.05 . < 1 < 0.05 < 0.05 . < 1 < 0.05 . < 0.05 . < 0.05 . < 0.05 . < 0.05 . < 0.05 . < 0.05 . < 0.05 . < 0.05 . < 0.05 . < 0.01 . < 0.05 . < 0.05 . < 0.05 . < 0.01 . < 0.01 . < 0.01 . < 0.01 . < 0.01 . . < 0.01 . < 0.01 . < 0.01 .<	Hexachlorobenzene	0.05	mg/kg	< 0.05	-	-	< 0.05	
Toxapnee 1 mg/kg < 1 - - < 1 Aldrin and Dieldrin (Total)* 0.05 mg/kg < 0.05	Methoxychlor	0.05	mg/kg	< 0.05	-	-	< 0.05	
Aldrin and Diedonin (Total)* 0.05 mg/kg < 0.05	Locaphene	1	mg/kg	< 1	-	-	< 1	
DDT + DDE + DDD (rotal)* 0.05 mg/kg < 0.05 r.g/kg < 0.05 r.g/kg < 0.05 r.g/kg < 0.05 r.g/kg < 0.05 r.g/kg < 0.05 r.g/kg < 0.05 r.g/kg < 0.05 r.g/kg < 0.05 r.g/kg < 0.05 r.g/kg < 0.05 r.g/kg < 0.05 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 r.g/kg < 0.1 < 0.1 < 0.1 < 0.1		0.05	mg/kg	< 0.05	-	-	< 0.05	
Vic EPA WRG 621 OCP (Total) 0.1 mg/kg < 0.1	DDT + DDE + DDD (Total)	0.05	mg/kg	< 0.05	-	-	< 0.05	
Vic EPA WKG 621 Other OCP (10tar) 0.1 Hig/kg < 0.1 F < < < 0.1 Dibutylchlorendate (surr.) 1 % 106 - - 97 Tetrachloro-m-xylene (surr.) 1 % 88 - - 90 Polychlorinated Biphenyls 1 % 88 - - 90 Aroclor-1016 0.1 mg/kg < 0.1 - - < 0.1 Aroclor-1221 0.1 mg/kg < 0.1	Vic EPA IWRG 621 OCF (Total)	0.1	mg/kg	< 0.1	-	-	< 0.1	
Dibutychlorendate (sur.) 1 78 100 1 6 100 1 97 Tetrachloro-m-xylene (sur.) 1 % 88 - - 90 Polychlorinated Biphenyls 2 0.1 mg/kg < 0.1	Dibutulchloropdate (curr.)	0.1	0/.	106	-	-	< 0.1 07	
Polychlorinated Biphenyls 0.1 mg/kg < 0.1 - - < 0.1 Aroclor-1016 0.1 mg/kg < 0.1	Tetrachloro-m-xylene (surr.)	1	/0 0/2	88	-		97 QA	
Aroclor-1016 0.1 mg/kg < 0.1 - - < 0.1 Aroclor-1221 0.1 mg/kg < 0.1	Polychlorinated Binhenvls	I	70		-	-		
Aroclor-1010 0.1 mg/kg < 0.1 - - < 0.1 Aroclor-1221 0.1 mg/kg < 0.1	Arodor-1016	0.1	ma/ka	< 0.1			< 0.1	
Aroclor-1221 0.1 mg/kg < 0.1 r - < 0.1 Aroclor-1232 0.1 mg/kg < 0.1	Aroclor-1221	0.1	mg/kg	~ 0.1	-		< 0.1	
Aroclor-1242 0.1 mg/kg < 0.1 - - < 0.1 Aroclor-1248 0.1 mg/kg < 0.1	Aroclor-1232	0.1	ma/ka	< 0.1	-	-	< 0.1	
Aroclor-1248 0.1 mg/kg < 0.1 - - < 0.1 Aroclor-1254 0.1 mg/kg < 0.1	Aroclor-1242	0.1	ma/ka	201	-	-	< 0.1	
Aroclor-1254 0.1 mg/kg < 0.1 - < 0.1	Aroclor-1248	0.1	ma/ka	< 0.1	-	-	< 0.1	
	Aroclor-1254	0.1	mg/kg	< 0.1	-	-	< 0.1	

Client Sample ID Sample Matrix			BH04 0.5 Soil	BH04 1.0 Soil	BH04 3.0 Soil	QC3 Soil
Eurofins mgt Sample No.			M18-Se21257	M18-Se21258	M18-Se21259	M18-Se21261
Date Sampled			Sep 12, 2018	Sep 12, 2018	Sep 12, 2018	Sep 03, 2018
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls						
Aroclor-1260	0.1	mg/kg	< 0.1	-	-	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	-	-	< 0.1
Dibutylchlorendate (surr.)	1	%	106	-	-	97
Tetrachloro-m-xylene (surr.)	1	%	88	-	-	90
Heavy Metals						
Arsenic	2	mg/kg	4.8	4.7	2.0	8.6
Cadmium	0.4	mg/kg	< 0.4	0.5	< 0.4	< 0.4
Chromium	5	mg/kg	13	39	5.3	13
Copper	5	mg/kg	11	14	6.1	14
Lead	5	mg/kg	56	83	24	22
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	< 5	< 5
Zinc	5	mg/kg	67	230	33	25
% Moisture	1	%	11	9.3	13	19

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B7			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Sep 18, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C36			
BTEX	Melbourne	Sep 18, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Sep 18, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Sep 18, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Melbourne	Sep 18, 2018	14 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Melbourne	Sep 18, 2018	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins mgt Suite B13			
Organochlorine Pesticides	Melbourne	Sep 18, 2018	14 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Melbourne	Sep 18, 2018	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
% Moisture	Melbourne	Sep 17, 2018	14 Day
- Method: LTM-GEN-7080 Moisture			

💸 eurofins	mgt	ABN- 50 005 0 e.maii : Enviros web : www.eur	05 085 521 iroSales@eurofins.com eurofins.com.au		5 521 les@eurofins.com ins.com.au		lelbourne -5 Kingston Town Close akleigh VIC 3166 hone : +61 3 8564 5000 ATA # 1261 ite # 1254 & 14271	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736
Company Name: Coffey Environm Address: Lot 101, 19 Wara Warabrook NSW 2304	ents P/L N'castle abrook Boulevard			Or Re Ph Fa	der N port # one: x:	o.: #:	618016 02 4016 2300 02 4016 2380		Received: Due: Priority: Contact Name:	Sep 17, 2018 8:09 AM Sep 24, 2018 5 Day Simon Baker
Project Name:NBN DEVELOPProject ID:754-MLGE22050	MENT)4							Eurofin	s mgt Analytical Serv	ices Manager : Andrew Black
Sampl	e Detail		Asbestos - AS4964	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7				
Melbourne Laboratory - NATA Site # 12	254 & 14271			х	Х	Х				
Sydney Laboratory - NATA Site # 1821	7		Х							
Brisbane Laboratory - NATA Site # 207	94									
Perth Laboratory - NATA Site # 23736										
External Laboratory										
No Sample ID Sample Date Sa	ampling Matrix Time	LAB ID								
1 BH01 0.5 Sep 03, 2018	Soil	M18-Se21253		Х	Х	Х]			
2 BH01 1.0 Sep 03, 2018	Soil	M18-Se21254			х	Х				
3 BH02 0.1 Sep 10, 2018	Soil	M18-Se21255			Х	Х				
4 BH02 0.5 Sep 10, 2018	Soil	M18-Se21256	Х	х	Х	Х				
5 BH04 0.5 Sep 12, 2018	Soil	M18-Se21257	Х	Х	Х	Х				
6 BH04 1.0 Sep 12, 2018	Soil	M18-Se21258			х	х				
7 BH04 3.0 Sep 12, 2018	Soil	M18-Se21259			Х	Х				
8 BH01 1.5 Sep 03, 2018	Soil	M18-Se21260	Х		Х					
9 QC3 Sep 03, 2018	Soil	M18-Se21261	Х	Х	Х	Х]			

🔅 eur	ofins mgt	ABN– 50 005 085 52 e.mail : EnviroSales@ web : www.eurofins.c	1 ≬eurofin om.au	s.com	N 200 F N S	Velbourne 2-5 Kingston Town Close Dakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 46 NATA # 1261 Site # 20	Perth 2/91 Leach Highway Kewdale WA 6105 600 Phone: +61 8 9251 9600 0794 NATA # 1261 Site # 23736
Company Name: Address:	Coffey Environments P/L N'castle Lot 101, 19 Warabrook Boulevard Warabrook NSW 2304		Or Re Pr Fa	der N port i ione: x:	lo.: #:	618016 02 4016 2300 02 4016 2380		Received: Due: Priority: Contact Name:	Sep 17, 2018 8:09 AM Sep 24, 2018 5 Day Simon Baker
Project Name: Project ID:	NBN DEVELOPMENT 754-MLGE220504						Eurofin	s mgt Analytical Se	ervices Manager : Andrew Black
	Sample Detail	Asbestos - AS4964	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7				
Melbourne Laborato	ory - NATA Site # 1254 & 14271		Х	Х	Х				
Sydney Laboratory	- NATA Site # 18217	X							
Brisbane Laboratory	y - NATA Site # 20794								
Perth Laboratory - N	NATA Site # 23736								
Test Counts		4	4	9	8				

Internal Quality Control Review and Glossary

General

1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
сос	Chain of Custody
SRA	Sample Receipt Advice
QSM	Quality Systems Manual ver 5.1 US Department of Defense
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			•	·		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank						
втех						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total	mg/kg	< 0.3		0.3	Pass	
Method Blank						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank		•		·		
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank		1		1		
Organochlorine Pesticides						
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
a-BHC	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-BHC	mg/kg	< 0.05		0.05	Pass	
d-BHC	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	
Endrin	mg/kg	< 0.05		0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05		0.05	Pass	
Endrin ketone	mg/kg	< 0.05		0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05		0.05	Pass	
Heptachlor	mg/kg	< 0.05		0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05		0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05		0.05	Pass	
Methoxychlor	mg/kg	< 0.05		0.05	Pass	
Toxaphene	mg/kg	< 1		1	Pass	
Method Blank		1	Г – Г	1		
Polychlorinated Biphenyls						
Aroclor-1016	mg/kg	< 0.1		0.1	Pass	
Aroclor-1221	mg/kg	< 0.1		0.1	Pass	
Aroclor-1232	mg/kg	< 0.1		0.1	Pass	
Aroclor-1242	mg/kg	< 0.1		0.1	Pass	
Aroclor-1248	mg/kg	< 0.1		0.1	Pass	
Aroclor-1254	mg/kg	< 0.1		0.1	Pass	
Aroclor-1260	mg/kg	< 0.1		0.1	Pass	
Total PCB*	mg/kg	< 0.1		0.1	Pass	
Method Blank		1	L L	1		
Heavy Metals	1					
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Nickel	mg/kg	< 5		5	Pass	
Zinc	mg/kg	< 5		5	Pass	
LCS - % Recovery		1				
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	%	83		70-130	Pass	
TRH C10-C14	%	79		70-130	Pass	
LCS - % Recovery		1		1		
BTEX	1					
Benzene	%	83		70-130	Pass	
Toluene	%	94		70-130	Pass	
Ethylbenzene	%	108		70-130	Pass	
m&p-Xylenes	%	108		70-130	Pass	
Xylenes - Total	%	109		70-130	Pass	
LCS - % Recovery		1				
Total Recoverable Hydrocarbons - 2013 NEPM Fractions		407		70.400		
	%	107		70-130	Pass	
TRH C6-C10	%	80		70-130	Pass	
	%	/3		70-130	Pass	
LUG - % Recovery						
	0/	00		70.400	Dass	
	<u>%</u>	99		70-130	Pass	
Acthropopo	% 0/	107		70-130	Pass	
Annualdene Bonz(a)anthracana	70 0/	04		70 120	Pass	
	70 0/	112		70 120	Pass	
	70 0/	100		70 420	Pass Dees	
Denzo(baj)indoranthene	70	109	I I	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Benzo(g.h.i)perylene			%	85		70-130	Pass	
Benzo(k)fluoranthene			%	111		70-130	Pass	
Chrysene			%	124		70-130	Pass	
Dibenz(a.h)anthracene			%	79		70-130	Pass	
Fluoranthene			%	121		70-130	Pass	
Fluorene			%	106		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	85		70-130	Pass	
Naphthalene			%	104		70-130	Pass	
Phenanthrene			%	94		70-130	Pass	
Pyrene			%	111		70-130	Pass	
LCS - % Recovery								
Organochlorine Pesticides								
4.4'-DDD			%	121		70-130	Pass	
4.4'-DDE			%	121		70-130	Pass	
4.4'-DDT			%	104		70-130	Pass	
a-BHC			%	112		70-130	Pass	
Aldrin			%	123		70-130	Pass	
b-BHC			%	109		70-130	Pass	
d-BHC			%	110		70-130	Pass	
Dieldrin			%	120		70-130	Pass	
Endosulfan I			%	119		70-130	Pass	
Endosulfan II			%	112		70-130	Pass	
Endosulfan sulphate			%	121		70-130	Pass	
Endrin			%	103		70-130	Pass	
Endrin aldehyde			%	127		70-130	Pass	
Endrin ketone			%	128		70-130	Pass	
g-BHC (Lindane)			%	112		70-130	Pass	
Hentachlor			%	108		70-130	Pass	
Heptachlor epoxide			%	116		70-130	Pass	
Hexachlorobenzene			%	108		70-130	Pass	
Methoxychlor			%	100		70-130	Pass	
LCS - % Recovery			,.	1	r			
Polychlorinated Biphenyls								
Aroclor-1260			%	126		70-130	Pass	
LCS - % Recovery			,,,			10.00	1 400	
Heavy Metals								
Arsenic			%	110		80-120	Pass	
Cadmium			%	106		80-120	Pass	
Chromium			%	120		80-120	Pass	
Copper			%	117		80-120	Pass	
Lead			%	115		80-120	Pass	
Mercury			%	114		75-125	Pass	
Nickel			%	116		80-120	Pass	
Zinc			%	112		80-120	Pass	
T = = 4		QA	Unite	Desult 4		Acceptance	Pass	Qualifving
Test	Lab Sample ID	Source	Units	Result		Limits	Limits	Code
Spike - % Recovery					 			ļ
Polycyclic Aromatic Hydrocarbons	;			Result 1				
Acenaphthene	M18-Se25700	NCP	%	88		70-130	Pass	ļ
Acenaphthylene	M18-Se25700	NCP	%	90		70-130	Pass	ļ
Anthracene	M18-Se25700	NCP	%	103		70-130	Pass	
Benz(a)anthracene	M18-Se25700	NCP	%	89		70-130	Pass	ļ
Benzo(a)pyrene	M18-Se25700	NCP	%	102		70-130	Pass	
Benzo(b&j)fluoranthene	M18-Se25700	NCP	%	82		70-130	Pass	ļ
Benzo(g.h.i)perylene	M18-Se25700	NCP	%	88		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Benzo(k)fluoranthene	M18-Se25700	NCP	%	106	70-130	Pass	
Chrysene	M18-Se25700	NCP	%	129	70-130	Pass	
Dibenz(a.h)anthracene	M18-Se25700	NCP	%	81	70-130	Pass	
Fluoranthene	M18-Se25700	NCP	%	119	70-130	Pass	
Fluorene	M18-Se25700	NCP	%	92	70-130	Pass	
Indeno(1.2.3-cd)pyrene	M18-Se25700	NCP	%	88	70-130	Pass	
Naphthalene	M18-Se25700	NCP	%	90	70-130	Pass	
Phenanthrene	M18-Se25700	NCP	%	74	70-130	Pass	
Pyrene	M18-Se25700	NCP	%	107	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
4.4'-DDD	M18-Se19501	NCP	%	94	70-130	Pass	
4.4'-DDE	M18-Se19501	NCP	%	107	70-130	Pass	
4.4'-DDT	S18-Se17865	NCP	%	104	70-130	Pass	
a-BHC	M18-Se19501	NCP	%	102	70-130	Pass	
Aldrin	M18-Se19501	NCP	%	110	70-130	Pass	
b-BHC	M18-Se19501	NCP	%	99	70-130	Pass	
d-BHC	M18-Se19501	NCP	%	100	70-130	Pass	
Dieldrin	M18-Se19501	NCP	%	106	70-130	Pass	
Endosulfan I	M18-Se19501	NCP	%	107	70-130	Pass	
Endosulfan II	M18-Se19501	NCP	%	98	70-130	Pass	
Endosulfan sulphate	M18-Se19501	NCP	%	102	70-130	Pass	
Endrin	M18-Se19501	NCP	%	117	70-130	Pass	
Endrin aldehyde	M18-Se19501	NCP	%	100	70-130	Pass	
Endrin ketone	M18-Se19501	NCP	%	104	70-130	Pass	
g-BHC (Lindane)	M18-Se19501	NCP	%	103	70-130	Pass	
Heptachlor	M18-Se19501	NCP	%	113	70-130	Pass	
Heptachlor epoxide	M18-Se19501	NCP	%	104	70-130	Pass	
Hexachlorobenzene	M18-Se19501	NCP	%	98	70-130	Pass	
Methoxychlor	M18-Se19501	NCP	%	127	70-130	Pass	
Spike - % Recovery							
Polychlorinated Biphenyls				Result 1			
Aroclor-1260	S18-Se20467	NCP	%	101	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1			
TRH C6-C9	M18-Se21256	CP	%	74	70-130	Pass	
TRH C10-C14	M18-Se21256	CP	%	80	70-130	Pass	
Spike - % Recovery							
BTEX				Result 1			
Benzene	M18-Se21256	CP	%	84	70-130	Pass	
Toluene	M18-Se21256	CP	%	83	70-130	Pass	
Ethylbenzene	M18-Se21256	CP	%	100	70-130	Pass	
m&p-Xvlenes	M18-Se21256	CP	%	100	70-130	Pass	
o-Xvlene	M18-Se21256	CP	%	103	70-130	Pass	
Xvlenes - Total	M18-Se21256	CP	%	101	70-130	Pass	
Spike - % Recovery				-			
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1			
Naphthalene	M18-Se21256	CP	%	91	70-130	Pass	
TRH C6-C10	M18-Se21256	СР	%	73	70-130	Pass	
TRH >C10-C16	M18-Se21256	CP	%	74	70-130	Pass	
Spike - % Recoverv				· · ·			
Heavy Metals				Result 1			
Arsenic	M18-Se21259	CP	%	108	75-125	Pass	
Cadmium	M18-Se21259	CP	%	103	75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Chromium	M18-Se21259	CP	%	112			75-125	Pass	
Copper	M18-Se21259	CP	%	106			75-125	Pass	
Lead	M18-Se21259	CP	%	101			75-125	Pass	
Mercury	M18-Se21259	CP	%	111			70-130	Pass	
Nickel	M18-Se21259	CP	%	110			75-125	Pass	
Zinc	M18-Se21259	CP	%	81			75-125	Pass	
Test	Lob Somalo ID	QA	Unito	Booult 1			Acceptance	Pass	Qualifying
1631	Source Source			Result I			Limits	Limits	Code
Duplicate				1					
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	M18-Se20615	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M18-Se20615	NCP	mg/kg	810	720	11	30%	Pass	
TRH C29-C36	M18-Se20615	NCP	mg/kg	400	340	15	30%	Pass	
Duplicate				[
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	M18-Se20615	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	M18-Se20615	NCP	mg/kg	980		12	30%	Pass	
TRH >C34-C40	M18-Se20615	NCP	mg/kg	230		24	30%	Pass	
Duplicate							I		
Polycyclic Aromatic Hydrocarbons	5			Result 1	Result 2	RPD			
Acenaphthene	M18-Se25698	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M18-Se25698	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M18-Se25698	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M18-Se25698	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M18-Se25698	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M18-Se25698	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M18-Se25698	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M18-Se25698	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M18-Se25698	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M18-Se25698	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M18-Se25698	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	M18-Se25698	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M18-Se25698	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M18-Se25698	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M18-Se25698	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M18-Se25698	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides	r			Result 1	Result 2	RPD			
Chlordanes - Total	M18-Se19941	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	M18-Se19941	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	M18-Se19941	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	M18-Se19941	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	M18-Se19941	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	M18-Se19941	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	M18-Se19941	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	M18-Se19941	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	M18-Se19941	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	M18-Se19941	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	M18-Se19941	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	M18-Se19941	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	M18-Se19941	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	M18-Se19941	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	M18-Se19941	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	M18-Se19941	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	M18-Se19941	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Heptachlor epoxide	M18-Se19941	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	M18-Se19941	NCP	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	M18-Se19941	NCP	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	M18-Se19941	NCP	ma/ka	< 1	< 1	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	M18-Se19941	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	M18-Se19941	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	M18-Se19941	NCP	ma/ka	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	M18-Se19941	NCP	ma/ka	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	M18-Se19941	NCP	ma/ka	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	M18-Se19941	NCP	ma/ka	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	M18-Se19941	NCP	ma/ka	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	M18-Se19941	NCP	ma/ka	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M18-Se21255	CP	ma/ka	< 20	< 20	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	M18-Se21255	CP	ma/ka	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M18-Se21255	СР	ma/ka	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M18-Se21255	СР	ma/ka	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M18-Se21255	СР	ma/ka	< 0.2	< 0.2	<1	30%	Pass	
o-Xvlene	M18-Se21255	CP	ma/ka	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	M18-Se21255	CP	ma/ka	< 0.3	< 0.3	<1	30%	Pass	
Duplicate				•					
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M18-Se21255	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M18-Se21255	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate	•								
				Result 1	Result 2	RPD			
% Moisture	M18-Se21255	CP	%	8.1	8.1	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M18-Se21257	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate				-					
ВТЕХ		-		Result 1	Result 2	RPD			
Benzene	M18-Se21257	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M18-Se21257	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M18-Se21257	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M18-Se21257	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	M18-Se21257	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	M18-Se21257	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate				1					
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M18-Se21257	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M18-Se21257	CP	mg/kg	< 20	< 20	<1	30%	Pass	l
Duplicate				1					
Heavy Metals			1	Result 1	Result 2	RPD			
Arsenic	M18-Se21259	CP	mg/kg	2.0	< 2	1.0	30%	Pass	[
Cadmium	M18-Se21259	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	[
Chromium	M18-Se21259	CP	mg/kg	5.3	5.3	1.0	30%	Pass	
Copper	M18-Se21259	CP	mg/kg	6.1	6.1	<1	30%	Pass	[
Lead	M18-Se21259	CP	mg/kg	24	24	<1	30%	Pass	L

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Mercury	M18-Se21259	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M18-Se21259	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	M18-Se21259	CP	mg/kg	33	33	1.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

0000	
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference

Authorised By

Andrew Black	Analytical Services Manager
Chris Bennett	Senior Analyst-Metal (VIC)
Harry Bacalis	Senior Analyst-Volatile (VIC)
Joseph Edouard	Senior Analyst-Organic (VIC)
Nibha Vaidya	Senior Analyst-Asbestos (NSW)

Glenn Jackson National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{click here.}$

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

Coffey Environments Pty Ltd Newcastle Lot 101, 19 Warabrook Boulevard Warabrook NSW 2304

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Merrick Jones

Report Project name Project ID Received Date 620058-S NBN - 120 7-H1-NTLGE220504 Sep 28, 2018

Client Sample ID			BH03 0.4M	BH03 0.7-1.0M
Sample Matrix			Soil	Soil
Eurofins mgt Sample No.			S18-Se37046	S18-Se37047
Date Sampled			Sep 17, 2018	Sep 17, 2018
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions			
TRH C6-C9	20	mg/kg	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50
BTEX				
Benzene	0.1	mg/kg	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	83	83
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100
Polycyclic Aromatic Hydrocarbons				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5

Client Sample ID			BH03 0.4M	BH03 0.7-1.0M
Sample Matrix			Soil	Soil
Eurofins mgt Sample No.			S18-Se37046	S18-Se37047
Date Sampled			Sep 17, 2018	Sep 17, 2018
Test/Reference	LOR	Unit		
Polycyclic Aromatic Hydrocarbons	_			
Dibenz(a,h)anthracene	0.5	ma/ka	< 0.5	< 0.5
Fluoranthene	0.5	ma/ka	< 0.5	< 0.5
Fluorene	0.5	ma/ka	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	112	124
p-Terphenyl-d14 (surr.)	1	%	113	143
Organochlorine Pesticides				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	97	127
l etrachloro-m-xylene (surr.)	1	%	99	139
Polychlorinated Biphenyls				
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5
Arocior-1221	0.1	mg/kg	< 0.1	< 0.1
Arocior-1232	0.5	mg/kg	< 0.5	< 0.5
Arocior-1242	0.5	mg/kg	< 0.5	< 0.5
Arocior-1248	0.5	mg/kg	< 0.5	< 0.5
Arociof-1254	0.5	mg/kg	< 0.5	< 0.5
	0.5	mg/kg	< 0.5	< 0.5
Dibutulahlarandata (aurr.)	0.5	mg/kg	< 0.5	< 0.5
		<u>%</u>	97	127
retrachioro-m-xylene (suff.)	<u>г т</u>	70	99	139

Client Sample ID Sample Matrix			BH03 0.4M Soil	BH03 0.7-1.0M Soil
Eurofins mgt Sample No.			S18-Se37046	S18-Se37047
Date Sampled			Sep 17, 2018	Sep 17, 2018
Test/Reference	LOR	Unit		
Heavy Metals				
Arsenic	2	mg/kg	3.4	7.6
Cadmium	0.4	mg/kg	< 0.4	< 0.4
Chromium	5	mg/kg	6.3	20
Copper	5	mg/kg	6.0	9.8
Lead	5	mg/kg	8.0	23
Mercury	0.1	mg/kg	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5
Zinc	5	mg/kg	11	22
% Moisture	1	%	18	18

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Sep 28, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Sep 28, 2018	14 Day
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Sep 28, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Sep 28, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Sep 28, 2018	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Sep 28, 2018	28 Day
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Organochlorine Pesticides	Sydney	Sep 28, 2018	14 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Sydney	Sep 28, 2018	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
% Moisture	Sydney	Sep 28, 2018	14 Day
- Method: LTM-GEN-7080 Moisture			

•	🔅 eur	ofins	mgt		ABN– 50 005 e.mail : Enviro web : www.eur	085 521 Sales@ rofins.co	eurofins om.au	s.com	N 2 C P N S	Aelbourne 1-5 Kingston Town Close Jakleigh VIC 3166 Yonoe : +61 3 8564 5000 JATA # 1261 Site # 1254 & 14271	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 2079	Perth 2/91 Leach Highway Kewdale WA 6105 0 Phone : +61 8 9251 9600 94 NATA # 1261 Site # 23736
Con Add Pro	npany Name: dress: ject Name: ject ID:	Coffey Envir Lot 101, 19 V Warabrook NSW 2304 NBN - 120 7-H1-NTLGE	onments P/L N Warabrook Bo E220504	l'castle ulevard			Or Re Ph Fa	der N port a ione: ix:	o.: #:	620058 02 4016 2300 02 4016 2380	Eurofin	Received: Due: Priority: Contact Name:	Sep 28, 2018 8:10 AM Oct 8, 2018 5 Day Merrick Jones
		Sa	mple Detail			Asbestos - AS4964	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7				Vices Indiager - Andrew Didek
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71									
Sydn	ey Laboratory	NATA Site # 1	8217			Х	Х	Х	Х	4			
Brisk	ane Laborator	/ - NATA Site #	20794							-			
Perth	Laboratory - N	IATA Site # 237	/36							-			
No	Sample ID	Sample Date	Sampling	Matrix	LAB ID					-			
1		Son 17, 2010	Time	Coil	C10 Co27040		v			-			
2		Sep 17, 2018		Soil	S18-Se37046	× ×	X	X	X	-			
∠ Test	Counts	Joep 17, 2010	I		010-0637047	2	2	2	2	-			
Test	oounis					-	-	-	-				

Internal Quality Control Review and Glossary

General

1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
coc	Chain of Custody
SRA	Sample Receipt Advice
QSM	Quality Systems Manual ver 5.1 US Department of Defense
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance	Pass Limits	Qualifying
Duplicate	blicate								
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S18-Se37090	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S18-Se37091	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S18-Se37091	NCP	mg/kg	120	110	6.0	30%	Pass	
TRH C29-C36	S18-Se37091	NCP	mg/kg	59	74	22	30%	Pass	
Duplicate			00						
Polycyclic Aromatic Hydrocarbons	;			Result 1	Result 2	RPD			
Acenaphthene	B18-Se36396	NCP	mg/kg	0.8	0.8	8.0	30%	Pass	
Acenaphthylene	B18-Se36396	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	B18-Se36396	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	B18-Se36396	NCP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	B18-Se36396	NCP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&i)fluoranthene	B18-Se36396	NCP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)pervlene	B18-Se36396	NCP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	B18-Se36396	NCP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	B18-Se36396	NCP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a,h)anthracene	B18-Se36396	NCP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	B18-Se36396	NCP	ma/ka	< 2	< 2	<1	30%	Pass	
Fluorene	B18-Se36396	NCP	ma/ka	1.2	0.8	<1	30%	Pass	
Indeno(1,2,3-cd)pyrene	B18-Se36396	NCP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	B18-Se36396	NCP	ma/ka	4.9	4.8	2.0	30%	Pass	
Phenanthrene	B18-Se36396	NCP	ma/ka	2.5	21	14	30%	Pass	
Pyrene	B18-Se36396	NCP	ma/ka	< 2	< 2	<1	30%	Pass	
Duplicate				·	· -				
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S18-Se36955	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S18-Se36955	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S18-Se36955	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S18-Se36955	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S18-Se36955	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S18-Se36955	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S18-Se36955	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S18-Se36955	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S18-Se36955	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S18-Se36955	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S18-Se36955	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S18-Se36955	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S18-Se36955	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S18-Se36955	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S18-Se36955	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S18-Se36955	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S18-Se36955	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S18-Se36955	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S18-Se36955	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S18-Se36955	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S18-Se36955	NCP	mg/kg	< 1	< 1	<1	30%	Pass	

Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S18-Se36955	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1221	S18-Se36955	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S18-Se36955	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S18-Se36955	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S18-Se36955	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Heavy Metals			-	Result 1	Result 2	RPD			
Arsenic	S18-Se37282	NCP	mg/kg	**	**	<1	30%	Pass	
Cadmium	S18-Se37282	NCP	mg/kg	**	**	<1	30%	Pass	
Chromium	S18-Se37282	NCP	mg/kg	**	**	10	30%	Pass	
Copper	S18-Se36243	NCP	mg/kg	**	**	18	30%	Pass	
Lead	S18-Se37282	NCP	mg/kg	**	**	3.0	30%	Pass	
Nickel	S18-Se36243	NCP	mg/kg	**	**	17	30%	Pass	
Zinc	S18-Se37282	NCP	mg/kg	**	**	7.0	30%	Pass	
Duplicate				-					
				Result 1	Result 2	RPD			
% Moisture	S18-Se37046	CP	%	18	18	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX

N04 analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Andrew Black Nibha Vaidya Analytical Services Manager Senior Analyst-Asbestos (NSW)

Glenn Jackson National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofines (ing shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofines (ing the liable for cost, outpace) included the share of experimentation or interpretation given in this report. In no case shall Eurofines (ing the liable for cost, outpace) included the share of experimentation or interpretation given in this report. In no case shall Eurofines, the tests were production arising for this report. This document shall not be reproduced except in full and retaines tested. Unless indicated otherwise, the tests were the share is tracked to the share of except in the share retaines tests.

	!							
2	Consignin	Ig Office:	transer	-	our the	C		
cottev	Report Re	sults to: Murri	ick. Isnes	2	lobile: merchiners	Email:	menuk. loves	@coffey.com
TETRA TECH COMPANY	Invoices t	0:	C	Р	none:	Email:	C	@coffey.com
Project No: 754-NTL64 220504	Task No: FIEL	Oriela		_		Analysis Requ	Jest Section	
Project Name: NBN UBNEL WIMGNI	Laboratory:)a-		2.	
Sampler's Name: Mcku 14 Juss	Project Manager:	Shan NAKA	R	_				
Special Instructions:				4.5	13 13			
Lab No. Sample ID	Sample Date Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)	B		NC)TES
ROI O.T	Jall AM	5	4	SDAV				
第01 1.0	219118		L					
DHOZ O'I	81/12/01			6				
0402 0,5	10/51 18				100			
ston o.s	ILIGIIX			6				
MHCH I.O	1249/18			~				
BH01 1.5	3/9/8				<	6		
QC3					7			
QCY CAS)							Rease to	anster Acu
							P AS (CB7, B13)
							مع ل	1
								e.
RELINQUISHED BY	n .		3	RECEIVED BY		Sample Receipt /	Advice: (Lab Use Only)	
Name: MCKELLC JNCJ Date	= 14/9/18	→ Name: SS	al	D	ate: 14/9/18	All Samples Recie	ved in Good Condition	Q
Coffey Environments Time		Company:		1	me: 2-300M	All Documentatic	in is in Proper Order	Q
Name: Date		→ Name:			ate:	Samples Received	d Properly Chilled	P
Company: Time	i.e	Company:		-	me:	Lab. Ref/Batch N	010819 .	
Acid Preserved, I - Ice, ST - Sodium Thiosulfate, NP - No	Preservative							0
Coffev Environments			Version:	л				Icciie Date: 16/02/201

Tax Invoice

Coffey Environments P/L N'castle Lot 101, 19 Warabrook Boulevard Warabrook NSW 2304 Purchase Order #: Not provided Invoice #: 475470 Date: Sep 24, 2018 Report #: 618016 Project Name: NBN DEVELOPMENT Project ID: 754-MLGE220504 Contact: Simon Baker

Description	Quantity	Price	Total	Notes
Solid Samples				
Asbestos - AS4964	4	\$19.90	\$79.60	
Eurofins mgt Suite B13	4	\$27.80	\$111.20	
Eurofins mgt Suite B7	8	\$62.20	\$497.60	
Split sample couriered to external lab	1	\$45.00	\$45.00	

Nett Total	\$733.40
GST	\$73.34
Total Inc GST	\$806.74

This invoice is subject to Eurofins General Terms of Sales. Copies available on request or at http://environment.eurofins.com.au

Please detach and return with payment to: Postal: Eurofins | mgt PO Box 276 Oakleigh Victoria, 3166 Please EFT Payments to: Eurofins mgt BSB 063-498 Acct No: 10057019 e.mail Remittances: EnviroRemittances@eurofins.com Invoice Number : 475470 Amount Inc GST : \$806.74

TERMS STRICTLY 30 DAYS

Laboratories & Offices : Auckland, Christchurch, Melbourne, Sydney, Perth, Brisbane, Adelaide, Darwin, Newcastle

	🔅 eur	ofins	mgt		ABN- 50 005 0 e.mail : Enviro web : www.eur)85 521 Sales@ ofins.cc	eurofins m.au	.com	M 2- 0 PI N Si	leibourne 5 Kingston Town Close akleigh VIC 3166 hone : +61 3 8564 5000 ATA # 1261 ite # 1254 & 14271	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736
Co Ad	ompany Name: Idress:	Coffey Enviro Lot 101, 19 V Warabrook NSW 2304	onments P/L N Varabrook Bo	V'castle ulevard			Or Re Ph Fa	der N port # one: x:	o.: t:	618016 02 4016 2300 02 4016 2380		Received: Due: Priority: Contact Name:	Sep 17, 2018 8:09 AM Sep 24, 2018 5 Day Simon Baker
Pr Pr	oject Name: oject ID:	NBN DEVEL 754-MLGE22	OPMENT 20504								Eurofin	s mgt Analytical Servi	ces Manager : Andrew Black
		Sa	mple Detail			Asbestos - AS4964	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7				
Melk	oourne Laborate	ory - NATA Site	# 1254 & 142	271			х	х	Х				
Syd	ney Laboratory	- NATA Site # 1	8217			Х							
Bris	bane Laborator	y - NATA Site #	20794										
Pert	h Laboratory - N	NATA Site # 237	'36										
Exte	ernal Laboratory	, 											
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	BH01 0.5	Sep 03, 2018		Soil	M18-Se21253		Х	Х	Х				
2	BH01 1.0	Sep 03, 2018		Soil	M18-Se21254			х	х				
3	BH02 0.1	Sep 10, 2018		Soil	M18-Se21255			Х	Х				
4	BH02 0.5	Sep 10, 2018		Soil	M18-Se21256	Х	Х	Х	Х				
5	BH04 0.5	Sep 12, 2018		Soil	M18-Se21257	х	Х	Х	Х				
6	BH04 1.0	Sep 12, 2018		Soil	M18-Se21258			Х	Х				
7	BH04 3.0	Sep 12, 2018		Soil	M18-Se21259			Х	Х				
8	BH01 1.5	Sep 03, 2018		Soil	M18-Se21260	Х		Х					
9	QC3	Sep 03, 2018		Soil	M18-Se21261	Х	Х	Х	Х]			

🔅 eurofins mgt		ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au			N 20 F N S	Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 46 NATA # 1261 Site # 20	Perth 2/91 Leach Highway Kewdale WA 6105 00 Phone : +61 8 9251 9600 /794 NATA # 1261 Site # 23736
Company Name: Address:	me: Coffey Environments P/L N'castle Lot 101, 19 Warabrook Boulevard Warabrook NSW 2304		C R P F	Order No.: Report #: Phone: Fax:		618016 02 4016 2300 02 4016 2380		Received: Due: Priority: Contact Name:	Sep 17, 2018 8:09 AM Sep 24, 2018 5 Day Simon Baker
Project Name: Project ID:	NBN DEVELOPMENT 754-MLGE220504						Eurofin	ns mgt Analytical Se	ervices Manager : Andrew Black
	Sample Detail	Aspestos - AS4964	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7				
Melbourne Laboratory - NATA Site # 1254 & 14271			Х	Х	Х				
Sydney Laboratory - NATA Site # 18217		>	<						
Brisbane Laboratory - NATA Site # 20794						_			
Perth Laboratory - NATA Site # 23736									
Test Counts		4	4 4	9	8				

This page has been left intentionally blank